Examples Uses of the Slope of a Line

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define and find the slope of a line.
- Define the slope-intercept form of a linear equation in two variables.
- 3. Graph linear equations in slope-intercept form by hand in the rectangular coordinate system using the *Point-by-Point Plotting Method* and the *Intercept Method*.
- 4. Find the slope-intercept equation of a line.
- 5. Identify and use slopes of parallel and perpendicular lines.

Example 1: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (-1, 3) and (-4, -6).

We will let (-1, 3) equal (x_1, y_1) and (-4, -6) equal (x_2, y_2) . However, you can also let (-4, -6) equal (x_1, y_1) and (-1, 3) equal (x_2, y_2) . In either case, you will get the same answer.

Let's say that (-4, -6) equals (x_1, y_1) and (-1, 3) equals (x_2, y_2) . Be sure not to get confused!

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-6)}{-1 - (-4)} = \frac{3 + 6}{-1 + 4} = \frac{9}{3} = 3$$

Example 2: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (6, 3) and (6, 4).

Let (6, 3) equal (x_1, y_1) and (6, 4) equal (x_2, y_2) . Be sure not to get confused!

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{6 - 6} = \frac{1}{0}$$

Since there is a 0 in the denominator, this particular slope is undefined.

Example 3: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (1, 5) and (-9, 5).

Let (1, 5) equal (x_1, y_1) and (-9, 5) equal (x_2, y_2) . Be sure not to get confused!

Then
$$m = \frac{y_2 - y_1}{x_2 - y_{x1}} = \frac{5 - 5}{-9 - 1} = \frac{0}{-10} = 0$$

Since there is a 0 in the numerator, this particular **slope equals 0**. Please note the difference between this example and Example 2!

Example 4: Identify the Slopes of Lines

Identify the slopes of the graphs of the following linear equations. State whether the lines are increasing, decreasing, horizontal, or vertical.

- 1. y = 3x + 9m = 3, the slope is positive, therefore, the line is increasing
- 2. y = -5x 2m = -2, the slope is negative, therefore, the line is decreasing
- 3. y = 6 horizontal line, m = 0
- 4. x = -1 vertical line, m is undefined

Example 5: Identify the Slope and the y-Intercept of a Line

Identify the slope, the y-intercept and the ordered pair associated with the y-intercept given the equation of the line 5x + 4y = 9.

Please note that the equation is not in any particular form. We must change it to slope-intercept form y = mx + b to find the slope m and the y-intercept b.

First, we will move the x-term to the right side of the equation into its proper position next to the equal sign as follows:

$$4y = -5x + 9$$

Next, we divide BOTH sides of the equation by 4 to get the following:

$$y = -\frac{5}{4}x + \frac{9}{4}$$
 Please note that every term on the right side had to be divided by 4.

We find that the slope is $\frac{-5}{4}$ and the *y*-intercept is $\frac{9}{4}$.

The ordered pair associated with the *y*-intercept is $\left(0,\frac{9}{4}\right)$.

Example 6: Find the Slope-Intercept Equation of a Line

Find the slope-intercept equation of a line whose graph has slope m = -5 and passes through the point created by the ordered pair (-1, -4).

We will use m = -5 and (-1, -4) and place them into y = mx + b to find the value of b.

$$-4 = -5(-1) + b$$

$$-4 = 5 + b$$

$$-9 = b$$

Given m = -5 and b = -9, we can now write the slope-intercept equation of a line whose graph passes through the point created by the ordered pair (-1, -4) and has slope -5.

That is, y = -5x - 9.

Example 7: Find the Slope-Intercept Equation of a Line (1 of 2)

Find the slope-intercept equation of a line whose graph passes through the points created by the ordered pairs (4, -2) and (-1, 5).

We need to find m. Let (4, -2) equal (x_1, y_1) and (-1, 5) equal (x_2, y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-2)}{-1 - 4} = \frac{7}{-5} = -\frac{7}{5}$$

Now we will use $m = -\frac{7}{5}$ and one of the given ordered pairs, say (4, -2), and place all into y = mx + b to find the value of b.

$$-2 = -\frac{7}{5}(4) + b$$

$$-2 = -\frac{7}{5}(4) + b$$

$$-2 + \frac{28}{5} = b$$

Example 7: Find the Slope-Intercept Equation of a Line (2 of 2)

To combine fractions, we need a common denominator, namely 5. We will write – 2 as $-\frac{10}{5}$ and find $b = \frac{18}{5}$.

Given $m = -\frac{7}{5}$ and $b = \frac{18}{5}$, we can now write the *slope-intercept equation* of a line whose graph through the points created by the ordered pairs (4, -2) and (-1, 5):

$$y = -\frac{7}{5}x + \frac{18}{5}$$

NOTE: In algebra we usually leave the equation in fraction form. We usually DO NOT change improper fractions to mixed numbers. Also, we usually do not change fractions to decimals, however, there are some exceptions to this convention.

Example 8: Parallel and Perpendicular Slopes (1 of 2)

Find the slopes of lines that are parallel and perpendicular to the line created by x - 3y - 12 = 0.

First, we need to find the slope of the line. Let's change the equation to slope-intercept form to find m.

$$x - 3y - 12 = 0$$

 $- 3y = -x + 12$

and
$$y = \frac{1}{3}x - 4$$

We can see that the slope of the given line is $\frac{1}{3}$.

The slope of any line parallel to the given line x - 3y - 12 = 0 is the same. Namely $\frac{1}{3}$.

Example 8: Parallel and Perpendicular Slopes (2 of 2)

On the other hand, the slopes of perpendicular lines are negative reciprocals.

The slope of the given line is $\frac{1}{3}$. The reciprocal of $\frac{1}{3}$ is $\frac{3}{1} = 3$.

Therefore, the negative reciprocal of $\frac{1}{3}$ is -3, which is the slope of any line perpendicular to the given line created by x - 3y - 12 = 0.

Example 9: Parallel and Perpendicular Slopes (1 of 2)

Find the slope-intercept equation of a line whose graph passes through the point created by the ordered pair (-2, 5) and is parallel to the line created by y = 3x + 1.

The slope of the line is 3. A parallel line will also have a slope of 3.

Now we will use m = 3 and (-2, 5) and place them into y = mx + b to find the value of b:

$$5 = 3(-2) + b$$

 $5 = -6 + b$
 $11 = b$

Example 9: Parallel and Perpendicular Slopes (2 of 2)

Given m = 3 and b = 11, we can now write the slope-intercept equatio of the line parallel to the line created by y = 3x + 1 and passing through the point created by the ordered pair (-2, 5).

That is, y = 3x + 11.

Example 10: Parallel and Perpendicular Slopes (1 of 2)

Find the slope-intercept equation of a line whose graph passes through the point created by the ordered pair (– 1, 2) and is perpendicular to the line created by $y = -\frac{1}{3}x + 1$.

The slope of the line is $-\frac{1}{3}$. A perpendicular line will have a slope that is the negative reciprocal of $-\frac{1}{3}$. The reciprocal of $-\frac{1}{3}$ is $-\frac{3}{1} = -3$.

Therefore, the negative reciprocal of $-\frac{1}{3}$ is -(-3) = 3.

Example 10: Parallel and Perpendicular Slopes (2 of 2)

Now we will use m = 3 and (-1, 2) and place them into y = mx + b to find the value of b.

$$2 = 3(-1) + b$$

 $2 = -3 + b$
 $5 = b$

Given m = 3 and b = 5, we can now write the slope-intercept equation of the line perpendicular to the line created by $y = -\frac{1}{3}x + 1$ and passing through the point created by the ordered pair (-1, 2).

That is, y = 3x + 5.

Example 11: Graph a Linear Equation in Two Variables (1 of 3)

Graph the linear equation y = -3x - 6 by hand.

The given linear equation is in *slope-intercept form*. However, this does not matter. We will still use either the *Point-by-Point Plotting Method* or the *Intercept Method*. Since we are not told which graphing method to use, let's try to use the *Intercept Method*.

Find the ordered pair associated with the *y*-intercept.

Let x = 0 and solve for y. y = 3(0) - 6 (this is a linear equation in one variable) y = -6

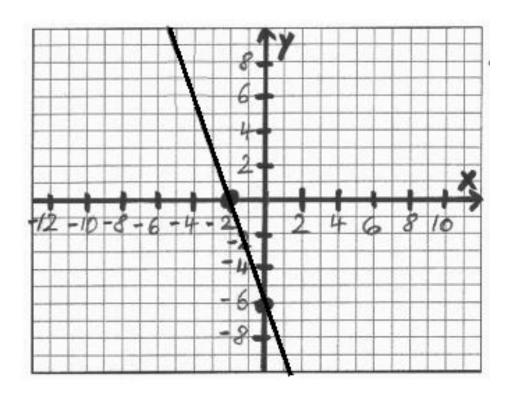
The y-intercept is -6, so the ordered pair associated with it is (0, -6).

Example 11: Graph a Linear Equation in Two Variables (2 of 3)

Find the ordered pair associated with the *x*-intercept.

```
Let y = 0 and solve for x

0 = -3x - 6 (this is a linear equation in one variable)


3x = -6

x = -2
```

The x-intercept is -2, so the ordered pair associated with it is (-2, 0).

Example 11: Graph a Linear Equation in Two Variables (3 of 3)

Graph the linear equation by drawing a line through the points created by the ordered pairs associated with the y- and x-intercepts.

