Examples Quadratic Equations in One Variable

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define quadratic equations in one variable.
- 2. Solve quadratic equations using the Quadratic Formula.
- 3. Solve quadratic equations using factoring.
- 4. Solve quadratic equations using the Square Root Property.

Example 1: Solve Quadratic Equations Using the Quadratic Formula (1 of 3)

Solve $x^2 + 9x + 16 = 0$ using the *quadratic formula*. Find only real solutions.

We will use
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

In the given quadratic equation, a = 1, b = 9, and c = 16. We insert these values into the quadratic formula to get

$$x = \frac{-(9) \pm \sqrt{(9)^2 - 4(1)(16)}}{2(1)}$$

$$x = \frac{-9 \pm \sqrt{81 - 64}}{2}$$

$$x = \frac{-9 \pm \sqrt{17}}{2}$$

Example 1: Solve Quadratic Equations Using the Quadratic Formula (2 of 3)

The quadratic equation has two solutions, and they are $x = \frac{-9 + \sqrt{17}}{2}$ and

$$x=\frac{-9-\sqrt{17}}{2}.$$

These are irrational solutions because $\sqrt{17}$ is an irrational number.

Please note that in algebra, we usually leave answers in this form instead of changing them to decimal form.

Example 1: Solve Quadratic Equations Using the Quadratic Formula (3 of 3)

Just for calculator practice purposes, let's change $x = \frac{-9 + \sqrt{17}}{2}$ and

$$x = \frac{-9 - \sqrt{17}}{2}$$
 to decimal approximations.

We must tell the calculator that the numerator contains 2 terms. We will use the parentheses buttons to enclose the numerator. Once this is accomplished, we divide by 2.

We get the following:

$$\frac{-9-\sqrt{17}}{2} \cong -6.561552813 \dots \text{ (infinitely many decimal places)}$$

$$\frac{-9+\sqrt{17}}{2} \cong -2.438447187 \dots \text{ (infinitely many decimal places)}$$

Example 2: Solve Quadratic Equations Using the Quadratic Formula

Solve $x^2 - 2x = -2$ using the *quadratic formula*. Find only real solutions.

Before we can continue, we must first write the equation in the general form $ax^2 + bx + c = 0$. That is, $x^2 - 2x + 2 = 0$.

We can now see that a = 1, b = -2, and c = 2. We insert these values into the quadratic formula to get the following:

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(2)}}{2(1)} = \frac{2 \pm \sqrt{4 - 8}}{2}$$
and $x = \frac{2 \pm \sqrt{-4}}{2}$

We note that the solution contains the imaginary value $\sqrt{-4}$. Therefore, we can state that this quadratic equation has NO real solutions.

Example 3: Solve Quadratic Equations Using Factoring (1 of 2)

Solve $x^2 + 5x = -6$ by factoring. Find only real solutions.

Let's first change the equation to the general form $ax^2 + bx + c = 0$.

$$x^2 + 5x + 6 = 0$$

Next, we will write the quadratic expression as a product of factors.

Find all pairs of positive integers whose product is c = 6.

$$6 = (1)(6)$$
 and $6 = (2)(3)$ and $6 = (-1)(-6)$ and $6 = (-2)(-3)$

Using the pairs above, find one whose sum is b = 5.

We notice that 2 and 3 have a sum of 5.

Example 3: Solve Quadratic Equations Using Factoring (2 of 2)

Let's create the template (x)(x) and use 2 and 3 as the second terms.

$$(x + 2)(x + 3) = 0$$

Now, we will solve this equation using the Zero Product Principle:

$$x + 2 = 0$$
 or $x + 3 = 0$

Then
$$x = -2$$
 or $x = -3$

See see that the quadratic equation has two integer solutions, and they are x = -2 and x = -3.

NOTE: We could have used the *quadratic formula* to get the same solutions.

Example 4: Solve Quadratic Equations Using Factoring (1 of 2)

Solve $x^2 - 4x = -4$ by factoring. Find only real solutions.

Let's first change the equation to the general form $ax^2 + bx + c = 0$.

$$x^2 - 4x + 4 = 0$$

Next, we will write the quadratic expression as a product of factors.

Find all pairs of positive integers whose product is c = 4.

$$4 = (1)(4)$$
 and $4 = (2)(2)$ and $4 = (-1)(-4)$ and $4 = (-2)(-2)$

Using the pairs above, find one whose sum is b = -4.

We notice that -2 and -2 have a sum of -4.

Example 4: Solve Quadratic Equations Using Factoring (2 of 2)

Let's create the template (x)(x) and use -2 and -2 as the second terms.

$$(x-2)(x-2)=0$$

Now, we will solve this equation using the Zero Product Principle:

Since both factors are the same, we only need to set one equal to 0 as follows:

$$x - 2 = 0$$

and
$$x = 2$$

The quadratic equation has one integer solution, and it is x = 2. We could have used the quadratic formula to get the same solution.

Example 5: Solve Quadratic Equations Using Factoring

Solve $2x^2 + 2x = 0$ by factoring. Find only real solutions.

In this equation, the c in $ax^2 + bx + c = 0$ missing. However, we note that both terms have a greatest common factor of 2x. We will factor it out of each term as follows:

$$2x(x+1)=0$$

Now, we will solve this equation using the Zero Product Principle:

$$2x = 0 \text{ or } x + 1 = 0$$

and
$$x = 0$$
 or $x = -1$

The quadratic equation has two integer solutions, and they are x = 0 and x = -1. We could have used the quadratic formula to get the same solutions.

Example 6: Solve Quadratic Equations Using the Square Root Property

Solve $x^2 = 16$ by the *Square Root Property*. Find only real solutions.

This equation is already in the form $u^2 = d$. Here, u = x and d = 16. Therefore, we can use the *Square Root Property* to state

$$x = \pm \sqrt{16} = \pm 4$$

The quadratic equation has two integer solutions, and they are – 4 and 4.

NOTE: We could have used the *quadratic formula* with a = 1, b = 0, and c = -16 to get the same solutions.

Example 7: Solve Quadratic Equations Using the Square Root Property

Solve $3x^2 - 21 = 0$ by the *Square Root Property*. Find only real solutions.

Before we can continue, we must first write the equation in the form $u^2 = d$.

$$3x^2 - 21 = 0$$

$$3x^2 = 21$$

$$x^2 = 7$$
 Note, now $u = x$ and $d = 7$.

By the Square Root Property, we find that $x = \pm \sqrt{7}$.

This quadratic equation has two irrational solutions. They are $x = \sqrt{7}$ and $x = -\sqrt{7}$. We do not usually change them to decimal form!

NOTE: We could have used the *quadratic formula* with a = 3, b = 0, and c = -21 to get the same solutions.

Example 8: Solve Quadratic Equations Using the Square Root Property

Solve $2x^2 + 18 = 0$ by the *Square Root Property*. Find only real solutions.

Before we can continue, we must first write the equation in the form $u^2 = d$.

$$2x^{2} + 18 = 0$$

 $2x^{2} = -18$
 $x^{2} = -9$ Note, now $u = x$ and $d = -9$.

By the Square Root Property, we find $x = \pm \sqrt{-9} = \pm 3i$.

Since the values for x are imaginary, we must state that this quadratic equation has "NO real solutions."

NOTE: We could have used the *quadratic formula* with a = 2, b = 0, and c = 18 to get the same solutions.

Example 9: Solve Quadratic Equations (1 of 2)

Solve $3x^2 + 27x = 0$. Find only real solutions.

Certainly, we could use the *Quadratic Formula* with a = 3, b = 27, and c = 0. Since the *Quadratic Formula* is sort of cumbersome to work with, our first thought should always be factoring or the *Square Root Property*.

While the given equation has only two terms, the *Square Root Property* will not easily work because neither term is a constant. So how about factoring?

We do notice that both terms have the factor of 3x in common which we can factor out as follows:

$$3x(x+9)=0$$

Now, we will solve this equation using the Zero Product Principle.

Example 9: Solve Quadratic Equations (2 of 2)

We set both factors equal to 0 as follows:

$$3x = 0$$
 and $x + 9 = 0$

So that
$$x = 0$$
 and $x = -9$

We find that the quadratic equation has two integer solution, namely, x = 0 and x = -9.

NOTE: We could have used the *quadratic formula* to get the same solutions.