Concepts Quadratic Functions – Part 1

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define the *general form* of a quadratic function.
- 2. Recognize the characteristics of the graphs of quadratic functions.
- 3. Given a quadratic function in general form, find the coordinates of the vertex and the equation of the axis of symmetry of its graph.
- 4. Graph quadratic functions in *general form* by hand.

NOTE: This lesson contains some examples. You can find more examples in the "Examples" document also located in the appropriate MOM Learning Materials folder.

1. The General Form of a Quadratic Function (1 of 3)

We have already been exposed to quadratic equations in one variable, for example, $x^2 - 5x - 6 = 0$.

Now, we will discuss quadratic equations in two variables, for example, $y = x^2 - 5x - 6$, where x is the independent variable.

Quadratic equations in two variables are functions, therefore, we can replace the dependent variable with function notation, for example, $g(x) = x^2 - 5x - 6$.

The **general form** of the quadratic function in *x* is

 $f(x) = ax^2 + bx + c$, where a, b, and c are real numbers and $a \neq 0$

Domain: All Real Numbers or $(-\infty, \infty)$ in Interval Notation.

The General Form of a Quadratic Function (2 of 3)

Examples of quadratic functions:

$$g(x) = x^2 + 5x + 6$$
 ($a = 1$, $b = 5$, and $c = 6$)
 $k(x) = 3x^2 + 21$ ($a = 3$, $b = 0$, and $c = 21$)

$$p(x) = -4x^2 - 2x$$

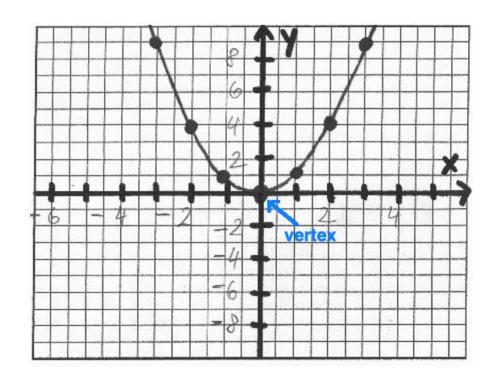
Please note that this function can be written as $p(x) = -4x^2 + (-2)x$. Now we see that a = -4, b = -2, and c = 0. We eliminate the double signs!

The General Form of a Quadratic Function (3 of3)

Examples of quadratic functions continued:

$$f(x) = x^2$$
 (a = 1, b = 0, and c = 0)

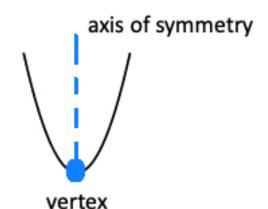
Special case of the quadratic function. It is often called the *Square Function*! We already discussed it in Lecture 8.



2. Characteristics of the Graphs of Quadratic Functions (1 of 3)

The graph of a quadratic function is called **parabola**. We can get graphs of parabolas open up and open down.

Parabolas Open Up occur when the coefficient a in $f(x) = ax^2 + bx + c$ is greater than 0 (a > 0) or positive.

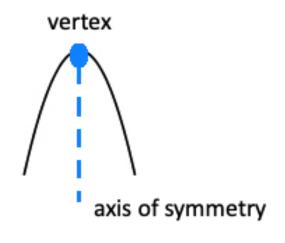


The vertex has the smallest y-coordinate of all points on the graph. Sometimes this y-coordinate is called a "minimum".

NOTE: The axis of symmetry is an invisible vertical line parallel to the *y*-axis that divides the parabola into two identical halves! Since it is invisible, we draw a dashed line!

Characteristics of the Graphs of Quadratic Functions (2 of 3)

Parabolas open down occur when the coefficient a in $f(x) = ax^2 + bx + c$ is less than 0 (a < 0) or negative.



The vertex has the greatest y-coordinate of all points on the graph. Sometimes this y-coordinate is called a "maximum".

Please notice that the graphs of parabolas have a smooth curve around the vertex!

The General Form of a Quadratic Function (3 of 3)

Example 1:

a. Is the graph of the quadratic function $g(x) = x^2 + 5x + 6$ a parabola open up or open down?

Since a = 1 which is greater than 0, the graph of the quadratic function is a parabola open up.

b. Is the graph of the quadratic function $p(x) = -4x^2 - 2x$ a parabola open up or open down?

Since a = -4 which is less than 0, the graph of the quadratic function is a parabola open down.

3. Coordinates of the Vertex and Equation of the Axis of Symmetry (1 of 3)

Given the general form $f(x) = ax^2 + bx + c$,

- the coordinates of the vertex are $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- the equation of the axis of symmetry (vertical line) is $x = -\frac{b}{2a}$.

NOTE: There is a proof in the learning materials showing that $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$ are indeed the coordinates of the vertex.

Coordinates of the Vertex and Equation of the Axis of Symmetry (2 of 3)

Example 2:

Given the quadratic function $g(x) = -x^2 + 4x + 1$, find the coordinates of the vertex of its graph and the equation of the axis of symmetry. Write the location of the vertex point as an ordered pair.

The x-coordinate of the vertex using $-\frac{b}{2a}$:

In the given function, a = -1 and b = 4. Then the x-coordinate is $-\frac{4}{2(-1)} = 2$.

The y-coordinate of the vertex using $g(-\frac{b}{2a})$:

$$g(2) = -(2)^2 + 4(2) + 1$$
. Please note that $-x^2 = -1(x^2)$.
= $-4 + 8 + 1$
= 5

Coordinates of the Vertex and Equation of the Axis of Symmetry (3 of 3)

Example 2 continued:

Since g(2) = 5, we find that y-coordinate associated with x = 2 is 5.

Therefore, the coordinates of the vertex are (2, 5).

To find the <u>equation</u> of the axis of symmetry we use $x = -\frac{b}{2a}$.

We find that
$$x = -\frac{4}{2(-1)} = 2$$
.

4. Graph Quadratic Functions in General Form by Hand (1 of 2)

Graphing Strategy:

Step 1: Determine whether the parabola opens up or down.

Step 2: Find and plot the coordinates of the vertex of the parabola.

Step 3: If possible, find and plot the coordinates of point(s) associated with the *x*- intercept(s). There could be 0, 1, or 2.

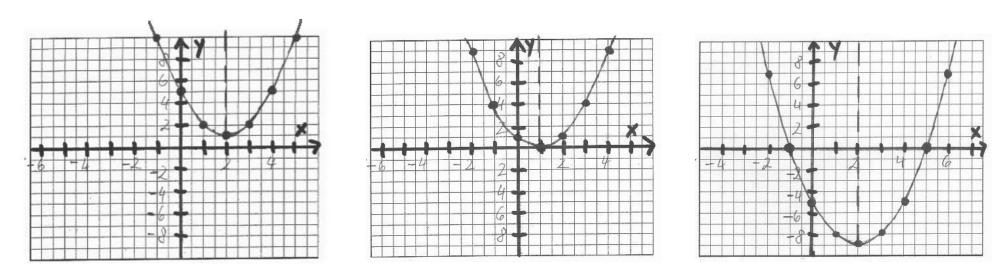
Step 4: Find and plot the coordinates of the point associated with the *y*-intercept. There is always exactly one *y*-intercept.

Step 5: Find and graph the axis of symmetry as a dashed line.

Step 6: Find and plot additional points, as necessary. Connect all points with a smooth curve that is shaped like a parabola open up or a parabola open down.

Graph Quadratic Functions in General Form by Hand (2 of 2)

The following examples show how there could be NO *x*-intercept, ONE *x*-intercept, or TWO *x*-intercepts.



For graphing examples, please refer to the "Examples" documents in the MOM Learning Materials folder pertaining to this lesson.