

PROBLEMS AND SOLUTIONS - SOLVING TRIGONOMETRIC EQUATIONS - PART 1 Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Solve Solve for
$$x$$
 on the interval $[0,2\pi)$. Express your answers in **EXACT** radians

Problem 2:

Solve Solve for
$$x$$
 on the interval $[0,2\pi]$. Express your answers in **EXACT** radians

Problem 3:

Solve $tan x = \sqrt{3}$ for x on the interval $(0,2\pi)$. Express your answers in **EXACT** radians.

Problem 4:

Solve $tan x = -\sqrt{3}$ for x on the interval $(0,2\pi)$. Express your answers in **EXACT** radians.

Problem 5:

Let's solve $tan x = -\sqrt{3}$ for x again, however, this time on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Be sure to express your answer in **EXACT** radians.

Problem 6:

Solve $\cos x = \frac{\sqrt{3}}{2}$ for x on the interval $[0^{\circ}, 360^{\circ}]$. Express your answers in degrees.

Problem 7:

Solve $\cos x = -0.67$ for x on the interval $[0,2\pi)$. Express your answers in radians.

Problem 8:

Solve $\sin x = 0.15$ for x on the interval $[0,2\pi)$. Express your answers in radians.

Problem 9:

Solve $\tan x = -0.45$ for x on the interval $[0,2\pi]$. Express your answers in radians.

Problem 10:

Solve $\cos x = 0.37$ for x on the interval $[0^{\circ}, 360^{\circ}]$. Express your answers in degrees.

Problem 11:

Solve $\sin x = 1$ for x on the interval $[0^{\circ},720^{\circ}]$. Express your answers in degrees.

Problem 12:

Solve $\cos x = 0$ for x on the interval $[0^{\circ}, 360^{\circ}]$. Express your answers in degrees.

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1.	2.	3.
$X_{\uparrow} = 45^{\circ} \equiv \frac{\pi}{4}$	$\boldsymbol{X}_{t} = 225^{\circ} \equiv \frac{5\pi}{4}$	$\boldsymbol{x}_{i}=\boldsymbol{60}^{o}\equiv \frac{\pi}{3}$
$x_2 = 180^{\circ} - 45^{\circ} = 135^{\circ} \equiv \frac{3\pi}{4}$	$\boldsymbol{x}_{2}=\boldsymbol{315}^{\circ}\equiv \frac{\boldsymbol{7\pi}}{\boldsymbol{4}}$	$\boldsymbol{X}_2 = \boldsymbol{240}^{\circ} \equiv \frac{\boldsymbol{4\pi}}{\boldsymbol{3}}$
4.	5.	6.
$X_{i}=120^{\circ}\equiv\frac{2\pi}{3}$	$x = -60^{\circ} \equiv -\frac{\pi}{3}$	$x_{i} = 30^{\circ}$ $x_{j} = 330^{\circ}$
$\boldsymbol{x}_{2}=\boldsymbol{300}^{\circ}\equiv\frac{\boldsymbol{5\pi}}{\boldsymbol{3}}$		
7.	8.	9.
$X_1 \approx 2.31$	$X_1 \approx 0.15$	$X_1 \approx \pi - 0.42 = 2.72$
$x_2 \approx \pi + 0.83 = 3.97$	$x_2 \approx \pi$ - 0.15 = 2.99	$x_2 \approx 2^{\pi} - 0.42 = 5.86$
10.	11.	12.
<i>X</i> ₁ ≈ 68.28°	x , = 90 °	X _i = 90 °
$x_2 \approx 360^\circ$ - 68.28° = 291.72°	$X_2 = 360^{\circ} + 90^{\circ} = 450^{\circ}$	x ₂ = 270°