

PROBLEMS AND SOLUTIONS - QUADRATIC FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Given
$$g(x) = (x-2)^2 + 1$$
, do the following:

- a. Find the coordinates of the vertex
- b. Find the equation of the Axis of Symmetry
- c. Find the coordinates of the x-intercept(s)
- d. Find the coordinates of the y-intercept(s)
- e. Graph the function.

Problem 2:

Given
$$f(x) = -(x + 2)^2 - 1$$
, do the following:

- a. Find the coordinates of the vertex
- b. Find the equation of the Axis of Symmetry
- c. Find the coordinates of the x-intercept(s)
- d. Find the coordinates of the y-intercept(s)
- e. Graph the function.

Problem 3:

Given
$$K(x) = x^2 - 2x + 1$$
, do the following:

- a. Find the coordinates of the vertex
- b. Find the equation of the Axis of Symmetry
- c. Find the coordinates of the x-intercept(s)
- d. Find the coordinates of the y-intercept(s)
- e. Graph the function.

Problem 4:

Given
$$f(x) = x^2$$
, do the following:

- a. Find the coordinates of the vertex
- b. Find the equation of the Axis of Symmetry
- c. Find the coordinates of the x-intercept(s)
- d. Find the coordinates of the y-intercept(s)
- e. Graph the function.

Problem 5:

Find an equation for the parabola whose vertex is (1, 2) and that passes through the point (0, 1).

Problem 6:

Write the quadratic function
$$f(x) = -2x^2 + 4x - 8$$
 in standard form $f(x) = a(x - h)^2 + k$

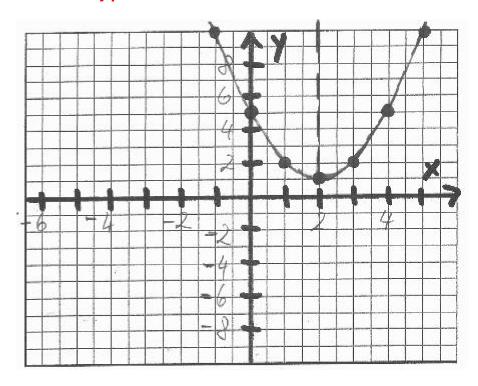
Problem 7:

The monthly profit P, in thousands of dollars, of a company can be estimated by the formula $P(x) = -3x^2 + 30x + 12$, where x is the number of units sold per month. Find the number of units that must be sold by the company to maximize its profit and then find the maximum profit.

Problem 8:

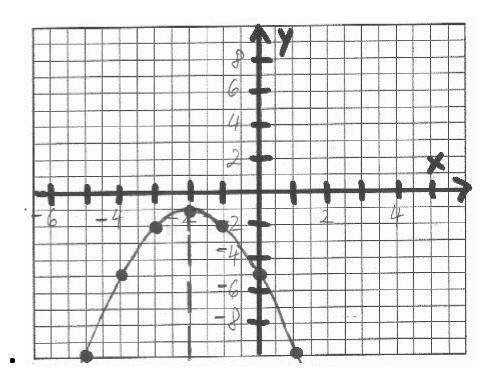
A projectile is shot upward. It's distance above the ground after t seconds is $s(t) = -16t^2 + 400t$. Please note from physics that any object tossed (fired, thrown, shot) into the air follows a parabolic path back to the ground! Calculate the time it takes for the projectile to hit the ground and find the maximum altitude achieved by the projectile.

Problem 9:


For what values of x is the graph of $f(x) = x^2 - 4x - 5$ below the x-axis?

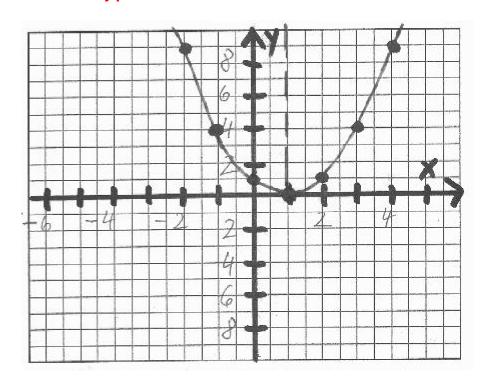
SOLUTIONS

You can find detailed solutions below the link for this problem set!

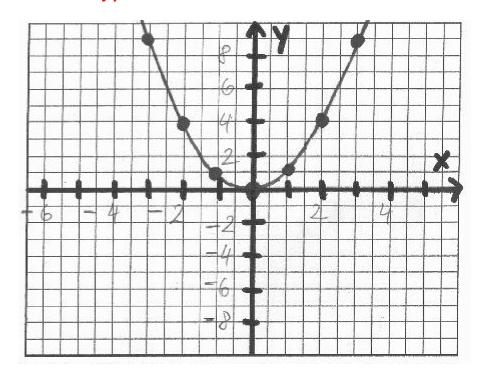

Problem 1:

- Coordinates of the vertex are (2, 1).
- Equation of the Axis of Symmetry: x = 2
- Coordinates of the x-intercept(s): **None**
- Coordinates of the y-intercept: (0, 5)
- Graph:
 - 1. The graph is SMOOTH and the vertex is U-shaped.
 - 2. The graph is NEVER parallel to the y-axis. Instead it moves away from it at a steady pace.

Problem 2:


- Coordinates of the vertex are (-2, -1).
- Equation of the Axis of Symmetry: X = -2
- Coordinates of the x-intercept(s): None
- Coordinates of the y-intercept: (0, -5)
- Graph:
 - 1. The graph is SMOOTH and the vertex is U-shaped.
 - 2. The graph is NEVER parallel to the y-axis. Instead it moves away from it at a steady pace.

Problem 3:


- Coordinates of the vertex are (1, 0).
- Equation of the Axis of Symmetry: **x** = **1**
- Coordinates of the x-intercept(s): (1, 0)
- Coordinates of the y-intercept: (0, 1)
- Graph:

 - The graph is SMOOTH and the vertex is U-shaped.
 The graph is NEVER parallel to the y-axis. Instead it moves away from it at a steady pace.

Problem 4:

- Coordinates of the vertex are (0, 0).
- Equation of the Axis of Symmetry: **x** = **0**
- Coordinates of the x-intercept(s): (0, 0)
- Coordinates of the y-intercept: (0, 0)
- Graph:
 - 1. The graph is SMOOTH and the vertex is U-shaped.
 - 2. The graph is NEVER parallel to the y-axis. Instead it moves away from it at a steady pace.

Problem 5:

$$f(x) = -(x-1)^2 + 2 = -x^2 + 2x + 1$$

Problem 6:

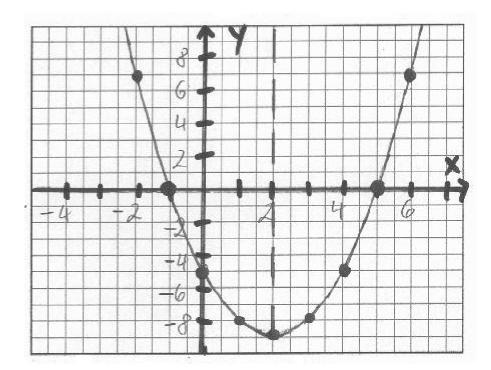
$$f(x) = -2(x-1)^2 - 6$$

Problem 7:

The maximum profit occurs when 5 units are sold.

The maximum profit is \$87,000 since the formula expresses the profit in thousands of dollars.

Problem 8:


Time it takes for the projectile to hit the ground: 25 seconds

Maximum Altitude: 2,500 feet

Problem 9:

The graph of $f(x) = x^2 - 4x - 5$ lies below the x-axis between x = -1 and x = 5.

Let's look at its graph!

