

PROBLEMS AND SOLUTIONS - PIECEWISE-DEFINED FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

The function f is defined as

$$f(x) = \begin{cases} x+3 & \text{if } x \le 0 \\ 3 & \text{if } 0 < x < 2 \\ 2x-1 & \text{if } x > 2 \end{cases}$$

- (a) Find **f(0)**, **f(1)**, **f(2)**, and **f(3)**.
- (b) Determine the coordinates of the intercepts of the function.
- (c) Graph the function.

Problem 2:

The function \boldsymbol{g} is defined as

$$g(x) = \begin{cases} 3x - 1 & \text{if } x < 2 \\ -x + 3 & \text{if } x > 4 \end{cases}$$

- (a) Find g(0), g(4), and g(5).
- (b) Determine the coordinates of the intercepts of the function.
- (c) Graph the function.

Problem 3:

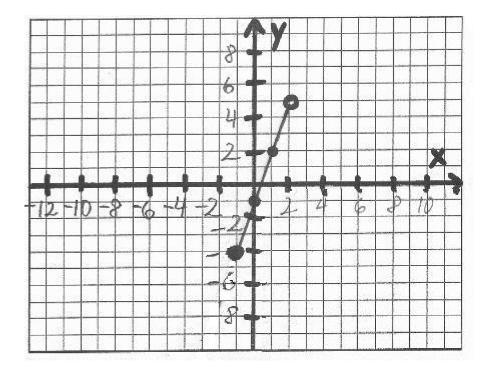
The function h is defined as

$$h(x) = \begin{cases} \frac{5}{4}x + \frac{5}{4} & \text{if } x < 3 \\ -3x + 12 & \text{if } x \ge 3 \end{cases}$$

- (a) Determine the coordinates of the intercepts of the function.
- (b) Graph the function.

Problem 4:

The function f is defined as


$$f(x) = \begin{cases} 2x + 1 & \text{if } x > 2 \\ 2x + 1 & \text{if } x < 2 \end{cases}$$

Please note that all branches are linear functions! In this case, the functions only differ in their domain restrictions.

- (a) Determine the coordinates of the intercepts of the function.
- (b) Graph the function.

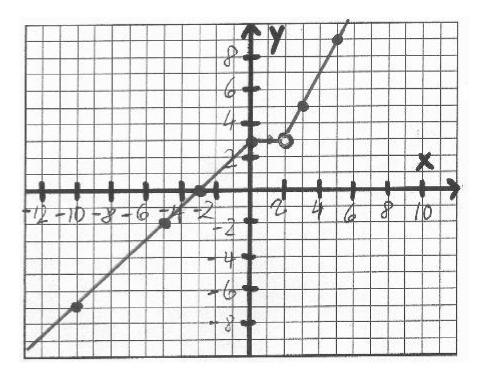
Problem 5:

Find the domain and range of the following function. Write them in *Interval Notation*.

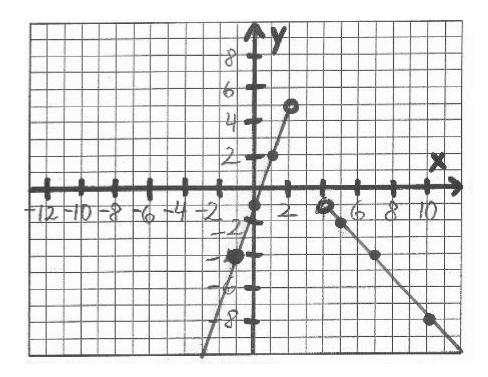
Problem 6:

The function \boldsymbol{g} is defined as

$$g(x) = \begin{cases} \sqrt{x+1} & \text{if } x \ge -1 \\ |x+1| & \text{if } x < -1 \end{cases}$$

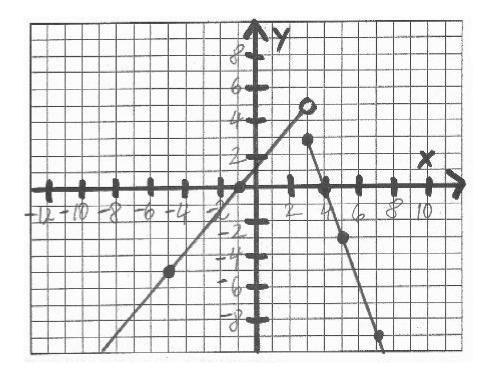

- (a) Determine the coordinates of the intercepts of the function.
- (b) Graph the function.

SOLUTIONS

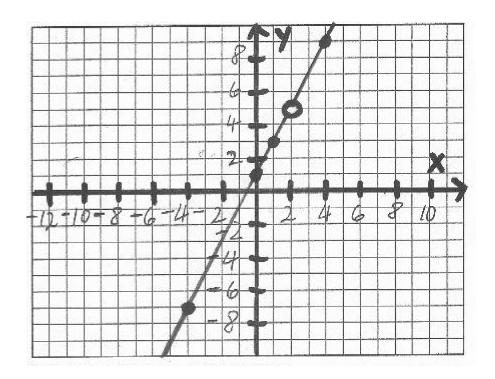

You can find detailed solutions below the link for this problem set!

- 1.a. f(0) = 3, f(1) = 3, f(2) does not exist, f(3) = 5
- 1.b. x-intercepts: (-3,0) y-intercepts: (0,3)

1.c. Graph of the function:

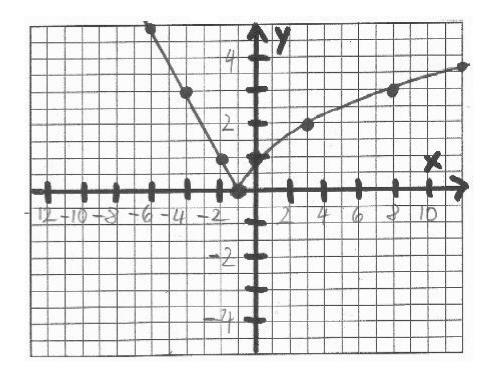


- 2.a. g(0) = -1, g(4) does not exist, g(5) = -2
- 2.b. x-intercepts: $\binom{1}{3}$,0 y-intercepts: $\binom{0}{4}$,-1)
- 2.c. Graph of the function:


3.a. x-intercepts: (-1, 0) and (4, 0) y-intercepts: $(0, \frac{5}{4})$

3.b. Graph of the function:

4.a. x-intercepts: $(-\frac{1}{2},0)$ y-intercepts: (0, 1)


4.b. Graph of the function:

5. Domain: **[-1, 2)** Range: **[-4, 5)**

6.a. x-intercepts: (-1, 0) y-intercepts: (0, 1)

6.b. Graph of the function:

