

PROBLEMS AND SOLUTIONS - LOGARITHM RULES AND BASIC PROPERTIES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Write log[(x-2)(x+5)] in terms of simpler logarithms. Use the logarithm rules until no more can be applied.

Problem 2:

Write $\frac{(6x+1)^7}{(4z+8)^6}$ in terms of simpler logarithms. Use the logarithm rules until no more can be applied.

Problem 3:

 $\log_5 \frac{x-4}{x+6}$ Write write in terms of simpler logarithms. Use the logarithm rules until no more can be applied.

Problem 4:

Write $\log^{5}\sqrt{x}$ in terms of simpler logarithms. Use the logarithm properties until no more can be applied.

Problem 5:

Write $\sqrt[3]{\frac{\mathbf{X}^2}{\mathbf{y}^3\mathbf{Z}}}$ in terms of simpler logarithms. Use the logarithm properties until no more can be applied.

Problem 6:

Let's write $\int_{0}^{\infty} \frac{\mathbf{x}^2}{\mathbf{y}^3 \mathbf{z}}$ in terms of simpler logarithms again. However, this time we'll use a different approach.

Problem 7:

Using ALL possible logarithm rules above, combine the following logarithmic expressions to one single expression.

$$\log_3 2x + \log_3 (x+1)$$

Problem 8:

Using ALL possible logarithm rules above, combine the following logarithmic expressions to one single expression

$$\log_s r + \log_s s - \log_s w$$

Problem 9:

Using ALL possible logarithm rules above, combine the following logarithmic expressions to one single expression

$$\frac{1}{3} \ln y - 3 \ln 2 + 8 \ln z$$

Problem 10:

Using ALL possible logarithm rules above, combine the following logarithmic expressions to one single expression

5
$$\ln w - 4 \ln x - \frac{1}{2} \ln y$$

Problem 11:

Using ALL possible logarithm rules above, combine the following logarithmic expressions to one single expression.

$$\frac{1}{2}\log(x-3)-3\log(x^2+2)-\frac{1}{3}\log(x+1)$$

Problem 12:

Evaluate the following common and natural logarithms without a calculator. Instead, use the basic logarithm properties stated above.

- _ log100
- $_{\rm b.}~\log\sqrt{10}$
- c. log1
- $_{\rm d.}$ In e $^{0.63}$

- _e Ine
- f. **In1**
- $\int_{\Omega_{z}} \log_{2} \frac{1}{2}$
- h. *log 0*

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1. log(x - 2) + log(x + 5)	2. $7 \ln(6x+1) - 6 \ln(4z+8)$	3. $\log_s(x-4)-\log_s(x+6)$
4. ½ log x	5. $\frac{2}{3} \ln x - \ln y - \frac{t}{3} \ln z$	6. $\frac{2}{3} \ln x - \ln y - \frac{1}{3} \ln z$
7. log₃[2x(x+1)]	8. log ₅ <u>rs</u>	9. In y'/3 z ⁸
		12. a. 2 b. 1/2 c. 0
$n \frac{\mathbf{w}^s}{\mathbf{x}^s \sqrt{\mathbf{y}}}$	$\log \left[\frac{(x-3)^{\frac{1}{2}}}{(x^2+2)^3(x+1)^{\frac{1}{2}}} \right]$	d. 0.63 e. 1 f. 0
		g. -1 h. undefined