

PROBLEMS AND SOLUTIONS - EXPONENTIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Find the following for $f(x) = 2^{x}$

- a. Domain
- b. Coordinates of the x-intercept
- c. Coordinates of the y-intercept
- d. Equation of the horizontal asymptote

Problem 2:

Find the following for $g(x) = (\frac{1}{2})^{\times}$

- a. Domain
- b. Coordinates of the x-intercept
- c. Coordinates of the v-intercept
- d. Equation of the horizontal asymptote

Problem 3:

Find the following for $k(x) = 2^{x+1} - 5$

- a. Domain
- b. Coordinates of the x-intercept. Round to 2 decimal places.
- c. Coordinates of the y-intercept
- d. Equation of the horizontal asymptote

Problem 4:

Find the following for $k(x) = e^x$.

- a. Domain
- b. Coordinates of the x-intercept
- c. Coordinates of the v-intercept
- d. Equation of the horizontal asymptote

Problem 5:

Find the following for $g(x) = -8e^{3x-4} + 16$

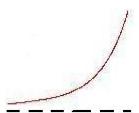
- a. Domain
- b. Coordinates of the x-intercept. Round to 2 decimal places.
- c. Coordinates of the y-intercept. Round to 2 decimal places.
- d. Equation of the horizontal asymptote

The graph has the following shape:

• Coordinates of the y-intercept:

Problem 6:

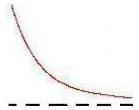
Find the following for $g(x) = -3e^{-6-2x} + 2$


- a. Domain
- b. Coordinates of the x-intercept. Round to 2 decimal places.
- c. Coordinates of the y-intercept. Round to 2 decimal places.
- d. Equation of the horizontal asymptote

SOLUTIONS

You can find detailed solutions below the link for this problem set!

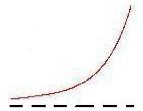
Problem 1:


The graph has the following shape:

- Its domain consists of All Real Numbers.
- NO x-intercept.
- The coordinates of the y-intercepts are (0, 1).
- Equation of the Horizontal Asymptote: y = 0

Problem 2:

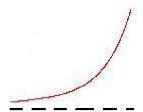
The graph has the following shape:



NOTE: This function can be changed to the form $g(x) = (\frac{1}{2})^x = (2^{-1})^x = 2^{-x}$. Now we can see that it is actually a reflection of the function $f(x) = 2^x$ about the y-axis.

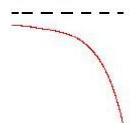
- Its domain consists of All Real Numbers.
- NO x-intercept.
- The coordinates of the y-intercepts are (0, 1).
- Equation of the Horizontal Asymptote: **y = 0**

Problem 3:


The graph has the following shape:

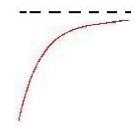
- Its domain consists of All Real Numbers.
- The coordinates of the x-intercept are approximately (1.32, 0).
- The coordinates of the y-intercept are (0, -3).
- Equation of the Horizontal Asymptote: **y = -5**

Problem 4:


The graph has the following shape:

- Its domain consists of All Real Numbers.
- NO x-intercept.
- The coordinates of the y-intercept are (0, 1).
- Equation of the Horizontal Asymptote: **y = 0**

Problem 5:


The graph has the following shape:

- Its domain consists of All Real Numbers.
- The coordinates of the x-intercept are approximately (1.56, 0).
- The coordinates of the y-intercept are (0, 15.85).
- Equation of the Horizontal Asymptote: **y = 16**

Problem 6:

The graph has the following shape:

- Its domain consists of All Real Numbers.
- The coordinates of the x-intercept are approximately (-2.80, 0).
- The coordinates of the y-intercept are (0, 1.99).
- Equation of the Horizontal Asymptote: **y = 2**