

PROBLEMS AND SOLUTIONS - SOLVING EXPONENTIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Solve 10 * = 5.71. Round to 4 decimal places.

Problem 2:

Solve $7e^{x} = 15$. Round to 4 decimal places.

Problem 3:

Solve
$$16^{x-1} = \frac{1}{2}$$
.

Problem 4:

Solve
$$9^{2x} = 27^{x+1}$$
 not using logarithms!

Problem 5:

Solve
$$\mathbf{5}^{\times -2} = \mathbf{3}^{2\times +1}$$
. Round to 3 decimal places.

Problem 6:

How many years will it take for an initial investment of **\$10,000** to grow to **\$25,000**? Assume a rate of interest of **2.5%** compounded continuously. Round your answer to a

whole number. Use the formula $\mathbf{A} = \mathbf{Pe}^{rt}$, where \mathbf{P} is the initial investment, \mathbf{A} is the accumulated amount, \mathbf{t} is the time in years and \mathbf{r} is the interest rate in decimals.

Problem 7:

The number of bacteria \mathbf{A} in a certain culture is given by the growth model $\mathbf{A} = \mathbf{250e}^{kt}$. Find the growth constant \mathbf{k} knowing that $\mathbf{A} = \mathbf{280}$ when $\mathbf{t} = \mathbf{5}$. Round your answer to four decimal places.

Problem 8:

The half-life of a radioactive substance is **950 years**. Find the constant k rounded to seven decimal places. Do not use scientific notation! Hint: Half-life means that exactly one-half of the original amount or size of the substance is left after a certain number of

years of growth/decay. Use the *Exponential Growth/Decay Model* $\mathbf{A} = \mathbf{A}_{0} \mathbf{e}^{\mathbf{k} \mathbf{t}}$, where \mathbf{A}_{0} is the original amount, \mathbf{A} is the accumulated amount, \mathbf{t} is the time in years and \mathbf{k} is the growth constant.

Problem 9:

The next problem involves carbon-14 dating which is used to determine the age of fossils and artifacts. The method is based on considering the percentage of a half-life of carbon-14 of approximately 5715 years. Specifically, the model for carbon-14 is

$$\mathbf{A} = \mathbf{A}_{o} \mathbf{e}^{-0.000121 t}$$

In 1947, an Arab Bedouin herdsman found earthenware jars containing what are known as the Dead Sea scrolls. Analysis at that time indicated that the scroll wrappings contained 76% of their original carbon-14. Estimate the age of the scrolls in 1947. Round your answer to a whole number.

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1. X ≈ .7566	2. x ≈ .7621	3. $X = \frac{3}{4} = .75$
4. x = 3	5. x ≈ -7.345	6. <i>t</i> ≈ 37
7. k ≈ 0.0227	8. k ≈ - 0.0007296	9. 2,268 years old