

PROBLEMS AND SOLUTIONS - COMBINING FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Given two functions $h(x) = x^2 + 3$ and k(x) = 2x - 1, find the following:

a.
$$(h + k)(x)$$

b.
$$(h - k)(x)$$

c.
$$(h - k)(x)$$

d.
$$(h \div k)(x)$$

$$e^{(h \circ k)(x)} = h[k(x)]$$

$$\int_{f}^{\infty} (k \circ h)(x) = k[h(x)]$$

Problem 2:

Given two functions $f(x) = \sqrt{4-x}$ and g(x) = x-3, find the following:

$$a (f \circ g)(x) = f[g(x)]$$

$$\int_{b}^{\infty} (g \circ f)(x) = g[f(x)]$$

Problem 3:

Given two functions f(x) = 3x - 2 and $g(x) = \frac{1}{3}x + \frac{2}{3}$, find the following:

$$_{a} (f \circ g)(x) = f[g(x)]$$

b.
$$(g \circ f)(x) = g[f(x)]$$

$$(f \circ f)(x) = f[f(x)]$$

$$_{d} (g \circ g)(x) = g[g(x)]$$

Problem 4:

The number n of cars produced by some factory in one day after t hours of operation is given by $n = 1000 \ t - 10 \ t^2$. If the cost C in dollars of producing n cars is C(n) = 16000 + 400n, find the cost C as a function of the time t of operating the factory.

Problem 5:

The price \boldsymbol{p} of some product and the quantity \boldsymbol{x} sold obey the (demand) equation

p = -x + 30 and the cost C of producing x units is $C = \frac{x + 12000}{20}$. Find the cost C as a function of the price p.

Problem 6:

The surface area ${\bf S}$ of a spherical hot-air balloon is given by ${\bf S}({\bf r})={\bf 4}\pi{\bf r}^2$, where ${\bf r}$ is the radius of the balloon. If the radius ${\bf r}$ increases with time ${\bf t}$ (in seconds) according to the formula ${\bf r}=\frac{1}{2}{\bf t}^3$, find the surface area ${\bf S}$ of the balloon as a function of the time ${\bf t}$.

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1.	2.	3.
$h + k)(x) = x^{2} + 2x + 2$ $(h - k)(x) = x^{2} - 2x + 4$ $(h \cdot k)(x) = 2x^{3} - x^{2} + 6x - 3$ $\left(\frac{h}{k}\right)(x) = \frac{x^{2} + 3}{2x - 1}$ $h(2x - 1) = 4x^{2} - 4x + 4$ $k(x^{2} + 3) = 2x^{2} + 5$	$(f \circ g)(x) = \sqrt{7-x}$ $(g \circ f)(x) = \sqrt{4-x} - 3$	$(f \circ g)(x) = x$ $(g \circ f)(x) = x$ $(f \circ f)(x) = 9x - 8$ $(g \circ g)(x) = \frac{1}{9}x + \frac{8}{9}$
4.	5.	6.
$C(t) = 16000 + 400000t - 4000t^2$	$C(p) = \frac{1}{20} p^2 - 3 p + 645$	$S(t) = \pi t^6$