

PROBLEMS AND SOLUTIONS - GRAPHS OF COMMON FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Do the following for $g(x) = (x + 1)^3 + 1$.

- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept.
- e. Graph the function.

Problem 2:

Do the following for g(x) = 3|x-1|+2

- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept.
- e. Graph the function.

Problem 3:

Do the following for $g(x) = (x+3)^{\frac{1}{3}} + 2$

- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept. Round to 1 decimal place.
- e. Graph the function.

Problem 4:

Do the following for $g(x) = (x-2)^{\frac{2}{3}} - 4$

- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept. Round to 1 decimal place.
- e. Graph the function.

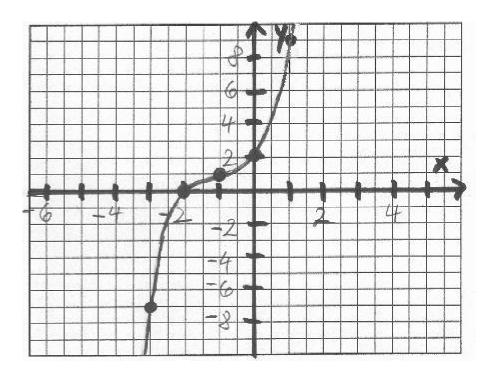
Problem 5:

Do the following for $p(x) = \sqrt{x+9} + 3$

- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept.
- e. Graph the function.

Problem 6:

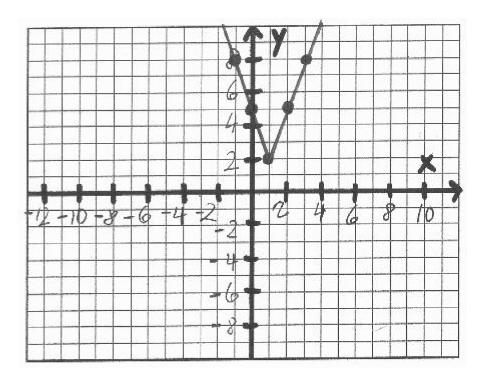
Do the following for $h(x) = \sqrt{1-x} - 2$


- a. Find its domain.
- b. Find the coordinates of the point at which concavity changes or the function starts or there is a vertex
- c. Find the coordinates of the x-intercept(s).
- d. Find the coordinates of the y-intercept.
- e. Graph the function.

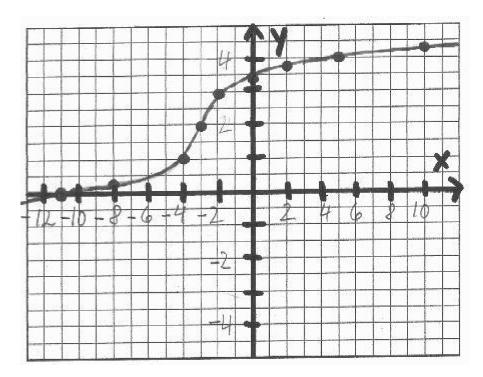
SOLUTIONS

You can find detailed solutions below the link for this problem set!

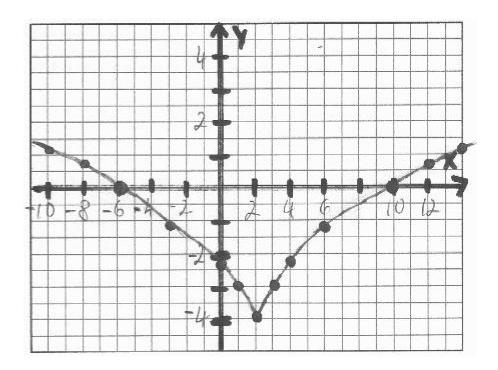
Problem 1:


- Its domain consists of All Real Numbers.
- The graph of the function changes concavity at (-1, 1).
- The coordinates of the x-intercept are (-2, 0).
- The coordinates of the y-intercept are (0, 2).
- Graph the the function:
 - 1. Please note that the graph has SMOOTH curves. It is concave up to the right of the point (-1, 1) and concave down to the left of it.
 - 2. The graph is NEVER parallel to the y-axis. Instead it moves away from it at a steady pace.

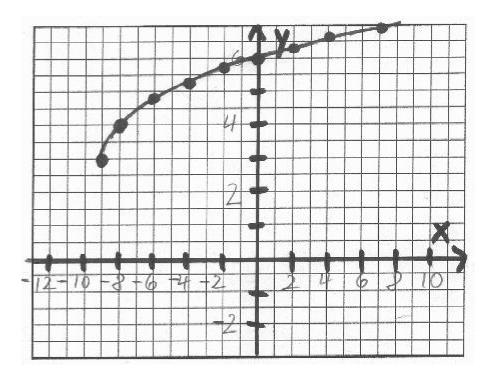
Problem 2:


- Its domain consists of All Real Numbers.
- The vertex point of the graph is at (1, 2).
- No x-intercepts.
- The coordinates of the y-intercept are (0,5)
- Graph of the function:

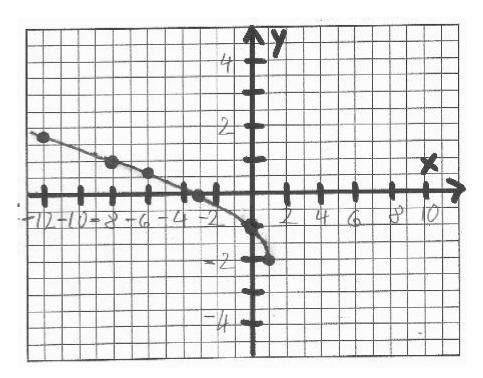
Please observe the V-shaped vertex with straight branches. This vertex is sometimes called a "cusp"!


Problem 3:

- Its domain consists of All Real Numbers.
- The graph of the function changes concavity at (-3, 2).
- Coordinates of the x-intercept(s):
- The coordinates of the x-intercept are (-11, 0).
- The coordinates of the y-intercept are approximately (0, 3.4).
- Graph of the function:
 - 1. Please note that the graph has SMOOTH curves. It is concave down to the right of the point (-3, 2) and concave up to the left of it.
 - 2. The graph is NEVER parallel to the x-axis. Instead it moves away from it at a steady pace.


Problem 4:

- Its domain consists of All Real Numbers.
- The vertex point of the graph of the function is at (2, -4).
- The coordinates of the x-intercepts are (10, 0) and (-6, 0).
- The coordinates of the y-intercept are approximately (0, -2.4).
- Graph of the function:
 - 1. Please observe the V-shaped vertex. Also note that the graph has SMOOTH curves. It is concave down to the right and to the left of the vertex.
 - 2. The graph is NEVER parallel to the x-axis. Instead it moves away from it at a steady pace.


Problem 5:

- Domain is *[-9, ∞)* in Interval Notation.
- The graph of this function starts at (-9, 3).
- No x-intercepts.
- The coordinates of the y-intercept are (0, 6).
- Graph of the function:
 - 1. Please note that the graph is a SMOOTH curve. It is concave down to the right of its starting point (-9, 3).
 - 2. The graph is NEVER parallel to the x-axis. Instead it moves away from it at a steady pace.

Problem 6:

- Domain is $(-\infty, 1]$ in Interval Notation.
- The graph of this function starts at (1, -2).
- The coordinates of the x-intercept are (-3, 0).
- The coordinates of the y-intercept are (0, -1).
- Graph of the function:
 - 1. The graph is concave down to the left of its starting point (1, -2).
 - 2. The graph is NEVER parallel to the x-axis. Instead it moves away from it at a steady pace.

