DIFFERENTIATION RULES FOR SOME TRANSCENDENTAL FUNCTIONS

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Problem 1:

For
$$f(x) = 7x \tan x$$
, find $f'(x)$

Problem 2:

Find the derivative of $g(t) = t^2 - t \sin t$

Problem 3:

Use the Quotient Rule to differentiate $y = \frac{1 - \csc x}{2x - 1}$.

Problem 4:

Differentiate $y = \frac{1}{\cos x \cot x}$ using the Quotient Rule and the Product Rule.

Problem 5:

Use the Quotient Rule to differentiate $f(x) = \frac{1 + \sec x}{1 - \sec x}$

Problem 6:

Differentiate
$$f(x) = x \ln x$$

Problem 7:

Differentiate
$$f(x) = \frac{\ln x}{x}$$

Problem 8:

Differentiate
$$f(x) = x^2 e^x$$

Problem 9:

Differentiate
$$f(x) = e^{x} (\sin x + \cos x)$$

Problem 10:

Differentiate
$$f(x) = \frac{7x}{e^x}$$

Problem 11:

Differentiate
$$f(x) = \frac{2(3^{\times})}{x}$$

Problem 12:

Differentiate
$$f(x) = \tan x \log_3 x$$

Problem 13:

Find the slope-intercept equation of the line tangent to the graph of $f(x) = 3x + \sin x$ at the point $(\pi, 3\pi)$.

Problem 14:

Determine ALL x-coordinates at which the graph of the function $f(x) = 2\cos x + x\sqrt{2}$ has a horizontal tangent line.

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1.	$f'(x) = 7\tan x + 7x \sec^2 x$	$g'(t) = 2t - \sin t - t \cos t$
3.	$\frac{dy}{dx} = \frac{\csc x(2x \cot x - \cot x + 2) - 2}{(2x - 1)^2}$	4. Quotient Rule $ \frac{dy}{dx} = \frac{\sin x \cot x + \cos x \csc^2 x}{\cos^2 x \cot^2 x} $ Product Rule $ \frac{dy}{dx} = \sec x \tan^2 x + \sec^3 x $
5.	$\frac{dy}{dx} = \frac{2 \sec x \tan x}{(1 - \sec x)^2}$	$6. f'(x) = \ln x + 1$
7.	$f'(x) = \frac{1 - \ln x}{x^2}$	8. $f'(x) = 2xe^x + x^2e^x$

9. $f'(x) = 2e^{x} \cos x$	$f'(x) = \frac{7-7x}{e^x}$
11. $f'(x) = \frac{2 \ln 3(3^{\times}) x - 2(3^{\times})}{x^2}$	12. $f'(x) = \sec^2 x \log_3 x + \frac{\tan x}{x \ln 3}$
13. $y = 2x + \pi$	$\frac{\pi}{4}$ + 2π \mathbf{k} and $\frac{3\pi}{4}$ + 2π \mathbf{k} , where \mathbf{k} is any integer.