THE GENERAL POWER RULE AND THE LOGARITHMIC RULE FOR INTEGRATION

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Problem 1:

$$\int 4x(2x^2+3)^{50} dx$$
 Integrate . Note that "integrate" actually means to find the antiderivative for the function
$$f(x) = 4x(2x^2+3)^{50}$$
 !!!

Problem 2:

$$\int 8x(2x^2+3)^{50} dx$$
 Evaluate . Note that "evaluate" actually means to find the antiderivative for the function
$$f(x) = 8x(2x^2+3)^{50}$$
!!!

Problem 3:

$$\int x(2x^2+3)^{50} dx$$
Evaluate

Problem 4:

$$\int (2x^2 + 3)^{50} dx$$

Problem 5:

$$\int (2x+3)^2 dx$$
Evaluate

Problem 6:

Evaluate
$$\int \frac{t^2 + t}{(2t^3 + 3t^2)^4} dt$$

Problem 7:

Evaluate
$$\int \frac{1}{x^2} \left(1 + \frac{1}{x} \right)^3 dx$$

Problem 8:

Evaluate
$$\int \frac{\mathbf{v}}{\sqrt{\mathbf{9}-\mathbf{v}^2}} \, d\mathbf{v}$$

Problem 9:

$$\int \sin^3 x \cos x \, dx$$
Evaluate

Problem 10:

Problem 11:

Problem 12:

$$\int \frac{\cos 2x}{\sin^5 2x} dx$$

Problem 13:

$$\int (1-\cos \frac{t}{2})^2 \sin \frac{t}{2} dt$$
 Evaluate

Problem 14:

$$\int \frac{2e^{x}-2e^{-x}}{(e^{x}+e^{-x})^{2}} dx$$
Evaluate

Problem 15:

Evaluate
$$\int \frac{1}{4x-1} dx$$

Problem 16:

$$\int \frac{3x^2 + 1}{x^3 + x} dx$$

Problem 17:

Evaluate
$$\int \frac{\sec^2 x}{\tan x} \, dx$$

Problem 18:

Evaluate
$$\int \frac{x+1}{x^2+2x} dx$$

Problem 19:

Evaluate
$$\int \frac{x^2 + x + 1}{x^2 + 1} dx$$

Problem 20:

Problem 21:

$$\int \sec x \ dx$$
Evaluate

Problem 22:

Evaluate
$$\int \frac{e^{2x}}{1 + e^{2x}} dx$$

SOLUTIONS

You can find detailed solutions below the link for this problem set!

Tou can find detailed solutions below the link for this problem set:	
$F(x) = \frac{1}{51}(2x^2 + 3)^{51} + C$	$F(x) = \frac{2}{51}(2x^2 + 3)^{51} + C$
$F(x) = \frac{1}{204} (2x^2 + 3)^{51} + C$	4. Evaluation (integration) or finding an antiderivative is beyond the scope of this course.
5. $F(x) = \frac{4}{3}x^3 + 6x^2 + 9x + \frac{9}{2} + C$ or $F(x) = \frac{4}{3}x^3 + 6x^2 + 9x + C$	$F(t) = \frac{-1}{18(2t^3 + 3t^2)^3} + C$
$F(x) = -\frac{1}{4}\left(1 - \frac{1}{x}\right)^4 + C$	$F(v') = -\sqrt{9 - v^2} + C$ 8.
$F(x) = \frac{1}{4} \sin^4 x + C$	$F(x) = -\frac{1}{2}\csc^2 x + C$ or $F(x) = -\frac{1}{2}\cot^2 x + C$
$F(x) = \frac{1}{2} sin^2 x + C$ or $F(x) = -\frac{1}{2} cos^2 x + C$	$F(x) = \frac{-1}{8 \sin^4 2x} + C$
$F(t) = \frac{2}{3} (1 - \cos \frac{t}{2})^3 + C$	$F(x) = \frac{-2}{e^x + e^{-x}} + C$
$F(x) = \frac{1}{4} ln 4x - 1 + C$	$F(x) = \ln x ^3 + x + C$
$F(x) = \ln \tan x + C$	$F(x) = \frac{1}{2} \ln x^2 + 2x + C$

18.

$F(x) = x + \frac{1}{2} \ln x^2 + 1 + C$	$F(x) = -\ln \cos x + C$
$F(x) = -\ln \sec x + \tan x + C$	$F(x) = In 1 + e^{2x} + C$