THE EVALUATION OF DEFINITE INTEGRALS

Problem 1:

Evaluate
$$\int_{0}^{1} (4x^{2} - 8x + 1) dx$$
.

Problem 2:

Evaluate
$$\int_{1}^{2} \left(x - \frac{1}{x} \right)^{2} dx$$

Problem 3:

Evaluate
$$\int_{0}^{\frac{\pi}{6}} \frac{1}{4 \sec x} dx$$

Problem 4:

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin^2 x} dx$$
Evaluate

Problem 5:

$$\int\limits_{0}^{\pi} 4\cos 4x \ dx$$
Evaluate

Problem 6:

$$\int_{0}^{\frac{\pi}{6}} 7 \sec 8x \tan 8x \ dx$$
 Evaluate $-\frac{\pi}{4}$

Problem 7:

$$\int_{-1}^{2} 4x(2x^{2} + 3)^{2} dx$$
Evaluate

Problem 8:

Evaluate
$$\int_{-\sqrt{8}}^{-\sqrt{8}} \frac{\mathbf{v}}{\sqrt{\mathbf{9} - \mathbf{v}^2}} \, d\mathbf{v}$$

Problem 9:

(a) Use the definite integral to find the area bounded by $\mathbf{y} = 2\mathbf{x}$, the x-axis, and the vertical lines $\mathbf{x} = -2$ and $\mathbf{x} = 3$.

Problem 10:

- (a) Use the definite integral to find the area bounded by $f(x) = 4x x^2$, the x-axis, and the vertical lines x = 0 and x = 4.
- (b) Evaluate $\int_{0}^{4} (4x x^{2}) dx$

Problem 11:

(a) Use the definite integral to find the area bounded by $\mathbf{y} = \cos \mathbf{x}$, the x-axis, and the vertical lines $\mathbf{x} = \mathbf{0}$ and $\mathbf{x} = \pi$.

$$\int_{0}^{\pi} \cos x \, dx$$
(b) Evaluate

Problem 12:

Approximate the value of
$$\int_{1}^{1.5} \sin x^2 dx$$
 using the *Trapezoidal Rule* and *Simpson's Rule* with $n = 4$

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1. $-\frac{5}{3}$	2. $\frac{5}{6}$	3. $\frac{1}{8}$
4. 1	5. 0	$-\frac{21}{8}$
7. 402	81	9.a. 13 9.b. 5
10.a. $\frac{32}{3}$ 10.b. $\frac{32}{3}$	11.a. 2 11.b. 0	12. Trapezoidal Rule 0.08910 Simpson's Rule 0.08911