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LIMITS INVOLVING INFINITY

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada
Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Theorems
1. If b is any number, then

lim b=>b Iim b=»5b

X— o and X—— o

f(x)=b

The proof for this is "intuitive.” Since we are talking about the function

it should be obvious that the y-value will equal b no matter how large |X| becomes.

2. If k is a positive rational number and n is any real number, then
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The proof for this again is "intuitive". For example, let's look at the following

functions:
T
f{x)] —
x°®  where P=Tang k=3
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f(X) = 2/5 k _ 2
X% where P=T000 5nq * =%
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Both graphs indicate that as |x|gets larger and larger (X approaches infinity or ¥ —* @) the y-

values get smaller and smaller and ultimately approach 0.

Again, be sure that you distinguish between "approaching” and "arriving".

Of course, Y would never equal O because it isn't even in the range of the functions. However,
given a large enough x-value, it will eventually be soooooo small that it might as well be O!
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In this unit, we are only interested in finding for rational

functions. To accomplish this, we must do the following:
a. Find the highest power in the denominator.
b. Divide every term in the function by X raised to this power and reduce.
c. Use the Limit Laws from Unit 3 to find The Limit.

Finding Horizontal Asymptote in the Graph of Rational Functions

In a Precalculus course we are usually asked to memorize a "recipe" for finding horizontal
asymptotes of rational functions. However, this very "recipe" was actually found by observing
what happens to the y-value as the x-value approaches positive and negative infinity.

im, Jim, 1(x)
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Therefore, nd actually allows us to find horizontal asymptotes of

some functions.
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The highest power in the denominator is 3. Therefore, we will divide every term by X
Remember that equality is preserved as long as every term is divided by X -
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Now, the next steps will only be shown in this problem. Thereatfter, they will be omitted!

First, we'll use the Quotient Limit Law:
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Next, we'll use the Sum/Difference Limit Law:
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Finally, we use the Theorems above to find The Limit.
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Additionally, we have found the equation of the horizontal asymptote of the function
3
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The highest power in the denominator is 2. Therefore, we will divide every term by X
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Additionally, we have found the equation of the horizontal asymptote of the function

4x°
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Find >~ * 2x° + x* —1

The highest power in the denominator is 4. Therefore, we will divide every term by x*. Note
that we are approaching negative infinity. That is, we are investigating what happens to the y-
value given negative x-values.
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Note that the same result would occur for ¥ © 2x* + xX° -1

As a matter of fact, as long as we are dealing with rational functions, we can say with
Im = Iim
confidence that ¥~ ~* *7%,

Additionally, we have found the equation of the horizontal asymptote of the function
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Find >~  3x° +1

The highest power in the denominator is 2. Therefore, we will divide every term by X
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Notice that ¥~ * does not exist because as X approaches negative infinity, the y-value

gets larger and larger!
Therefore,
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Note that the same result would occur for =  3Xx° +1
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Accordingly, the function 3x* +1 does NOT have any horizontal asymptotes.



In this case, it is easier to use the Sum/Difference Limit Law to write
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Since $M X oscillates between -1 and 1, we can write — T2 §IHX =T Now let's divide all
terms by X and we find that
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We know that * and *7=* X , therefore, using the Squeezing Theorem,
we find that
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as can be seen in the graph below.
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