INDEFINITE INTEGRALS AND ANTIDERIVATIVES OF SOME TRANSCENDENTAL FUNCTIONS

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Problem 1:

Find the antiderivative for
$$\int \frac{3x^4 - 2x^3 + x^2 - 1}{3x^2} dx$$

Problem 2:

Problem 3:

Evaluate
$$\int \frac{1}{4 \sec x} dx$$
. Note that "evaluate" actually means to find the antiderivative for the function
$$f(x) = \frac{1}{4 \sec x}$$
!!!

Problem 4:

Evaluate
$$\int \frac{1}{\sin^2 x} dx$$

Problem 5:

Evaluate
$$\int \frac{\tan z}{\cos z} dz$$

Problem 6:

$$\int \frac{\sin^2 v}{1-\sin^2 v} dv$$
Evaluate

Problem 7:

$$\int (4 + 4 \tan^2 x) dx$$
Evaluate

Problem 8:

$$\int \frac{ \boldsymbol{csc} \; \boldsymbol{\theta} \; \boldsymbol{cos} \; \boldsymbol{\theta}}{\boldsymbol{sin} \; \boldsymbol{\theta}} \boldsymbol{d}\boldsymbol{\theta}$$
 Evaluate

Problem 9:

Problem 10:

$$\int (\tan x - \sec x)^2 dx$$

Problem 11:

$$\int (1 + \cot^2 x) dx$$

Problem 12:

Solve the differential equation
$$f'(x) = \csc x \cot x + x$$
 subject to the initial condition $f\left(\frac{\pi}{2}\right) = -1$

Problem 13:

Solve the differential equation
$$f''(x) = 2\cos x - 5\sin x$$
 subject to the initial conditions $f'(\pi) = 3$ and $f(\pi) = 2 + 6\pi$.

Problem 14:

Problem 15:

Evaluate

Problem 16:

$$\int \frac{1}{2} \cos 4x \, dx$$

Evaluate

Problem 17:

$$\int \cos 4x \ dx$$

Evaluate

Problem 18:

$$\int 2x\cos 4x \ dx$$

Evaluate

Problem 19:

Evaluate
$$\int \frac{1}{\sin(1-3x)\tan(1-3x)} dx$$

Problem 20:

Evaluate

Problem 21:

$$\int \cot^2\left(\frac{x}{3}\right) dx$$

Evaluate

Problem 22:

$$\int \frac{\sec 2x}{\cos 2x} dx$$

Problem 23:

Evaluate

$$\int 5xe^{-x^2}dx$$

Evaluate

SOLUTIONS

You can find detailed solutions below the link for this problem set!

1. F ($(x) = \frac{1}{x}x^3 - \frac{1}{3}x^2 - \frac{1}{3}\ln x + \frac{1}{3}x^{-1} + C$	$F(x) = \frac{2(5^x)}{\ln 5} + C$
3.	$F(x) = \frac{1}{4}\sin x + C$	$F(x) = -\cot x + C$
5.	$F(z) = \sec z + C$	F(v) = tanv - v + C
7.	$F(x) = 4 \tan x + C$	$F(\theta) = -\csc\theta + C$
9.	$F(y) = \sec y - \tan y + C$	$F(x) = 2 \tan x - 2 \sec x - x$
11.	$F(x) = -\cot x + C$	12. $f(x) = -\csc x + \frac{1}{2}x^2 - \frac{\pi^2}{8}$
13.	$f(x) = -2\cos x + 5\sin x + 8x - 2\pi$	$_{14.} F(x) = \sin 4x + C$
15.	$F(x) = 2 \sin 4x + C$	$F(x) = \frac{1}{8} \sin 4x + C$
17.	$F(x) = \frac{1}{4}\sin 4x + C$	18. Evaluation (integration) or finding an antiderivative is beyond the scope of this course.
19.	$F(x) = \frac{1}{3}\csc(1-3x) + C$	$F(x) = \frac{7}{8} \sec 8x + C$
21.	$F(x) = -3\cot\left(\frac{x}{3}\right) - x + C$	$F(x) = \frac{1}{2} \tan 2x + C$
23.	$F(x) = e^{3x+1} + C$	$F(x) = -\frac{5}{2}e^{-x^2} + C$