INDEFINITE INTEGRALS AND ANTIDERIVATIVES OF SOME ALGEBRAIC FUNCTIONS

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Problem 1:

$$\int (4x^2 - 8x + 1) dx$$

Integrate . Note that "integrate" actually means to find the antiderivative for the function $f(x) = 4x^2 - 8x + 1_{||||}$

Problem 2:

Evaluate
$$\int \left(\frac{4}{z^6} - \frac{7}{z^4} + z \right) dz$$

Evaluate
$$\int \left(\frac{4}{z^6} - \frac{7}{z^4} + z\right) dz$$
. Note that "evaluate" actually means to find the antiderivative
$$f(x) = \frac{4}{z^6} - \frac{7}{z^4} + z$$
 for the function
$$!!!$$

Problem 3:

$$\int (\sqrt{u^3} - \sqrt[5]{u} + 6) du$$
Evaluate

Problem 4:

Evaluate
$$\int \left(x - \frac{1}{x}\right)^2 dx$$

Problem 5:

$$\int (2x-5)(3x+1) dx$$

Evaluate

Problem 6:

Evaluate
$$\int \frac{2x^2 - x + 3}{\sqrt{x}} dx$$

Problem 7:

Solve the differential equation $f'(x) = 9x^2 + x - 8$ subject to the initial condition f(0) = 2.

Problem 8:

Solve the differential equation f''(x) = 6x - 4 subject to the initial conditions f'(2) = 5 and f(2) = 4.

SOLUTIONS

You can find detailed solutions below the link for this problem set!

$$F(x) = \frac{4}{3}x^{3} - 4x^{2} + x + C$$

$$1. F(x) = \frac{4}{5z^{5}} + \frac{7}{3z^{3}} + \frac{1}{2}z^{2} + C;$$

$$2. F(x) = \frac{2}{5}u^{\frac{5}{2}} - \frac{5}{6}u^{\frac{6}{5}} + 6u + C$$

$$3. F(x) = \frac{2}{5}u^{\frac{5}{2}} - \frac{13}{2}x^{2} - 5x + C$$

$$4. F(x) = \frac{1}{3}x^{3} - 2x - \frac{1}{x} + C$$

$$5. F(x) = 2x^{3} - \frac{13}{2}x^{2} - 5x + C$$

$$6. F(x) = \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} + 6x^{\frac{1}{2}} + C$$

$$7. f(x) = 3x^{3} + \frac{1}{2}x^{2} - 8x + 2$$

$$8. f(x) = x^{3} - 2x^{2} + x + 2$$