CRITICAL NUMBERS

Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Definition of Critical Numbers

Critical numbers are values of x at which f'(x) = 0 or f'(x) does not exist.

How to find Critical Numbers

- 1. Set the **first** derivative equal to **0** and solve.
- 2. If the **first** derivative has a denominator containing a variable, set the denominator equal to **0** and solve.

NOTE:

Solutions derived from Steps 1 and 2 must be in the domain of the function to be considered *critical numbers*.

Problem 1:

Find the critical numbers of $f(x) = 2x^3 + x^2 - 20x + 4$ with domain $(-\infty, \infty)$

The first derivative is $f'(x) = 6x^2 + 2x - 20$.

Step 1 - Set the first derivative equal to 0

$$0 = 6x^{2} + 2x - 20$$
$$(2x + 4)(3x - 5) = 0$$

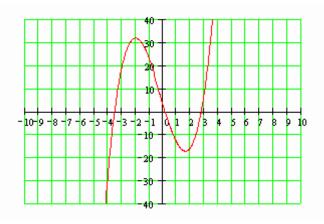
and by the Zero Product Principle $\mathbf{X} = -2$ or $\mathbf{X} = \frac{5}{3}$.

Both -2 and $\frac{5}{3}$ are *critical numbers* because they are in the domain of the function.

Step 2 - Not possible, since the first derivative does not have a denominator containing a variable.

Therefore, the function has two *critical numbers*, that is, -2 and $\frac{5}{3}$.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that for this function the *critical numbers* seem to be the x-coordinates of the peak and valley of the graph of the function.



Problem 2:

Find the critical numbers of $f(x) = x^{\frac{2}{3}} - 1_{\text{with domain}} (-\infty, \infty)$

$$f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3x^{1/3}}$$

The first derivative is

Please note that it is BEST to write the derivative as one single fraction with all positive exponents!

Step 1 - Set the first derivative equal to 0

 $0 = \frac{2}{3x^{\frac{1}{3}}}$ and multiplying both sides by the denominator indicates that there is no solution. Note $0 \neq 2$! Therefore, this step did not produce any *critical numbers*.

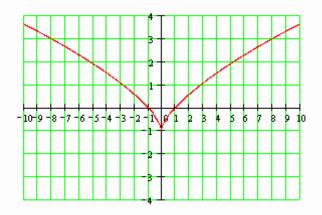
Step 2 - Set the denominator of the first derivative equal to 0

$$3x^{\frac{1}{3}} = 0$$
 and $x = 0$

0 is a *critical number* because it is in the domain of the function.

Therefore, the function has one critical number, that is, 0.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that for this function the *critical number again* seems to be the x-coordinate of the valley of the graph of the function. However, the bottom of this valley is not rounded but consists of a sharp point, which is called a cusp.



Problem 3:

Find the critical numbers of $f(x) = \sqrt[3]{x^2 - x - 2}$ with domain $(-\infty, \infty)$

The first derivative is

$$f'(x) = (2x-1)\left[\frac{1}{3}(x^2-x-2)^{-\frac{2}{3}}\right] = \frac{2x-1}{3(x^2-x-2)^{\frac{2}{3}}}$$

Step 1 - Set the first derivative equal to 0

$$0 = \frac{2x-1}{3(x^2-x-2)^{2/3}}$$

and multiplying both sides by the denominator indicates that

$$0 = 2x - 1$$

$$\mathbf{X} = \frac{1}{2}$$

 $\frac{1}{2}$ is a *critical number* because it is in the domain of the function.

Step 2 - Set the denominator of the first derivative equal to ${\it 0}$

$$3(x^{2}-x-2)^{\frac{2}{3}}=0$$

$$(x^{2}-x-2)^{\frac{2}{3}}=0$$

$$[(x^{2}-x-2)^{\frac{2}{3}}]^{\frac{3}{2}}=(0)^{\frac{3}{2}}$$

$$x^{2}-x-2=0$$

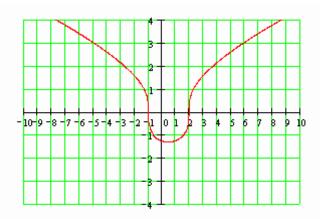
$$(x-2)(x+1)=0$$

and by the Zero Product Principle $\mathbf{X} = \mathbf{2}$ or $\mathbf{X} = -\mathbf{1}$.

Both 2 and -1 are *critical numbers* because they are in the domain of the function.

Therefore, the function has three *critical numbers*, that is, -1, $\frac{1}{2}$, and 2.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that for this function one of the *critical numbers* seems to be the x-coordinate of the valley of the graph of the function. The other two seem to be x-intercepts.



Problem 4:

Find the *critical numbers* of $f(x) = x\sqrt{9-x^2}$ with domain [-3,3]

The first derivative is

$$f'(x) = (9 - x^{2})^{\frac{1}{2}} + x(-2x)\left[\frac{1}{2}(9 - x^{2})^{-\frac{1}{2}}\right]$$

$$= (9 - x^{2})^{\frac{1}{2}} - \frac{x^{2}}{(9 - x^{2})^{\frac{1}{2}}}$$

$$= \frac{9 - x^{2} - x^{2}}{(9 - x^{2})^{\frac{1}{2}}}$$

$$f'(x) = \frac{9-2x^2}{(9-x^2)^{1/2}}$$

and

Step 1 - Set the first derivative equal to 0

$$0 = \frac{9 - 2x^2}{(9 - x^2)^{1/2}}$$

and multiplying both sides by the denominator indicates that

$$0 = 9 - 2x^2$$

 $x^2 = \frac{9}{2}$

and by the Square Root Property we find that $\mathbf{X} = -\frac{3}{\sqrt{2}} = -\frac{3\sqrt{2}}{2}$ and $\mathbf{X} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$

Both $-\frac{3\sqrt{2}}{2} \approx -2.12$ and $\frac{3\sqrt{2}}{2} \approx 2.12$ are *critical numbers* because they are in the domain of the function.

Step 2 - Set the denominator of the first derivative equal to 0

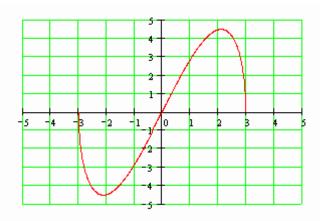
$$(9-x^2)^{\frac{1}{2}} = 0$$
 $[(9-x^2)^{\frac{1}{2}}]^2 = (0)^2$
 $9-x^2 = 0$
 $x^2 = 9$

and by the Square Root Property $\mathbf{X} = -\mathbf{3}_{\text{or}} \mathbf{X} = \mathbf{3}$.

Both -3 and 3 are *critical numbers* because they are in the domain of the function.

Therefore, the function has four *critical numbers*, that is, -3, $-\frac{3\sqrt{2}}{2} \approx -2.12$, $\frac{3\sqrt{2}}{2} \approx 2.12$, and 3.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that for this function two of the *critical numbers* seem to be the x-coordinates of the peak and valley of the graph of the function. The other two seem to be x-intercepts.



Problem 5:

Find the *critical numbers* of $f(x) = x\sqrt{2} - 2\cos x$ with restricted domain $[-2\pi, 2\pi]$

The first derivative is $f'(x) = \sqrt{2} + 2 \sin x$

Step 1 - Set the first derivative equal to 0

$$0 = \sqrt{2} + 2 \sin x$$

$$\sin x = -\frac{\sqrt{2}}{2}$$

$$x = \arcsin \left(-\frac{\sqrt{2}}{2}\right)$$

$$x = -45$$
° $\equiv -\frac{\pi}{4}$

Reference angle is ${\bf 45}^{\,\circ}\equiv \frac{\pi}{\bf 4}$

The numeric values of sine are negative in QIII and QIV.

Therefore, the solutions in the interval $[0,2\pi)$ are

225°
$$\equiv \frac{5\pi}{4}$$
 and 315° $\equiv \frac{7\pi}{4}$

and ALL solutions are

$$\frac{5\pi}{4}$$
 + $2\pi k$ and $\frac{7\pi}{4}$ + $2\pi k$, where k is any integer.

NOTE: You can think of ${\it k}$ as the number of round trips from and to the terminal side of the angles found in the interval ${\it [0,2\pi)}$. A negative ${\it k}$ indicates a clockwise movement (negative angles) and a positive ${\it k}$ indicates a counter-clockwise movement (positive angles).

For example,

when k = -1 we get the solutions on the interval $[-2\pi,0]$

when k = 0 we get the solutions on the interval $[0,2\pi]$

when k = 1 we get the solutions on the interval $[2\pi, 4\pi]$

etc.

The solutions in the interval $I^{-2\pi,2\pi}I_{\text{are}}$

$$\frac{5\pi}{4} + 2\pi(0) = \frac{5\pi}{4} \quad \text{and} \quad \frac{7\pi}{4} + 2\pi(0) = \frac{7\pi}{4} \quad \text{and}$$

$$\frac{5\pi}{4} + 2\pi(-1) = \frac{-3\pi}{4} \quad \text{and} \quad \frac{7\pi}{4} + 2\pi(-1) = \frac{-\pi}{4}$$

$$\frac{-3\pi}{4}$$
, $\frac{-\pi}{4}$, $\frac{5\pi}{4}$, and $\frac{7\pi}{4}$ are *critical numbers* because they are in the domain of the function.

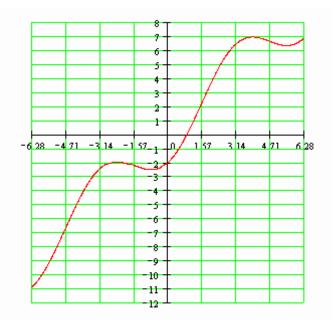
Step 2 - Not possible, since the first derivative does not have a denominator containing a variable.

Therefore, the function has four critical numbers, that is,

$$\frac{-3\pi}{4}$$
, $\frac{-\pi}{4}$, $\frac{5\pi}{4}$, and $\frac{7\pi}{4}$.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that for this function the *critical numbers* seem to be the x-coordinates of the peaks and valleys of the graph of the function.

$$\frac{-3\pi}{4} \approx -2.356$$
 $\frac{-\pi}{4} \approx -0.785$ $\frac{5\pi}{4} \approx 3.927$ $\frac{7\pi}{4} \approx 5.498$



Problem 6:

Find the critical numbers of $f(x) = (x + 2)^3 - 4_{\text{with domain}} (-\infty, \infty)$

The first derivative is $f'(x) = 3(x+2)^2$

Step 1 - Set the first derivative equal to 0

$$0 = 3(x + 2)^2$$

$$x + 2 = 0$$

and
$$\boldsymbol{x} = -2$$

-2 is a *critical number* because it is in the domain of the function.

Step 2 - Not possible, since the first derivative does not have a denominator containing a variable.

Therefore, the function has one *critical number*, that is, -2.

Below is the graph of the function. The *critical numbers* are values found along the x-axis. Please note that while this function has a *critical number*, it does not appear that it is the x-coordinate of a peak or valley. As a matter of fact, it seems to be the x-coordinate of the point at which concavity changes (see Precalculus, Chapter 2.3 and 2.4).

