

# DETAILED SOLUTIONS AND CONCEPTS - INEQUALITIES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT USE A CALCULATOR ON THE ACCUPLACER - ELEMENTARY ALGEBRA TEST! YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

## **Linear Inequalities**

They differ from linear equalities in that instead of an equal sign they contain the following symbols:

- > means greater than
- ≥ means greater than or equal to
- < means less than
- ≤ means less than or equal to

The **properties of linear inequality** are almost exactly like the ones for linear equalities, except for one very important difference:

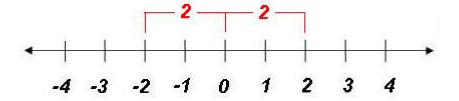
- When both sides of an inequality are **multiplied or divided by a negative number**, the direction of the inequality symbol is reversed.
- Linear inequalities have infinitely many solutions. We call this a solution set.

# **Compound Linear Inequalities**

They contain two inequality signs, for example,  $-2 < 5x + 1 \le 3$ . When solving for the variable, we isolate x in the middle, applying the *Properties of Linear Inequality* to the right and left side of the inequality, as well as to the middle. The inequality signs can be any combination of >, <,  $\le$  or  $\ge$ .

#### **Absolute Value**

The *Absolute Value* expresses the distance between a number and **0**. Let's look at the number line one more time.



We can see that the distance between  $\boldsymbol{0}$  and  $\boldsymbol{2}$  is  $\boldsymbol{2}$ . BUT, the distance between  $\boldsymbol{0}$  and  $\boldsymbol{-2}$  is also  $\boldsymbol{2}$ . We can express this as follows:

|2| = 2 means that the distance between 0 and 2 is 2. It is pronounced "the absolute value of two equals 2."

|-2| = 2 means that the distance between 0 and -2 is also 2. It is pronounced "the absolute value of negative 2 equals 2."

## **Absolute Value Inequalities**

They contain absolute value expression in addition to inequality signs, for example |x+8| < 5. Absolute value inequalities have infinitely many solutions. We call this a solution set.

Solution Strategy:

- If necessary, isolate the absolute value expression on one side of the equal sign.
- Depending on the inequality sign, rewrite the inequality without absolute value bars as follows.

$$|ax + b| \le c$$
 becomes  $-c \le ax + b \le c$   
 $|ax + b| < c$  becomes  $-c < ax + b < c$   
 $|ax + b| \ge c$  becomes  $ax + b \ge c$  or  $-(ax + b) \ge c$   
 $|ax + b| > c$  becomes  $ax + b > c$  or  $-(ax + b) > c$ 

The number **c** must be positive by definition of absolute value!!!

In the  $\geq$  or > case, you have to solve both inequalities!!! The word "or" is a part of the formula and means one or the other or both.

#### Notation for a Continuous Solution Set

Parentheses (): For example, in **Interval Notation**, a parenthesis next to a number indicates that the number is NOT included in the solution interval. Negative and positive infinity always start or end, respectively, with a parenthesis. See Table below.

Brackets []: For example, in **Interval Notation**, a bracket next to a number indicates that the number is included in the solution interval. See Table below.

Braces { }: For example, in **Set-Builder Notation** we use braces. See Table below.

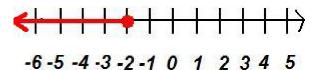
| Solution                                                                                                | Interval Notation                                                                                                          | Set-Builder Notation                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2 < X < 6 The values of x are greater than 2 and smaller than 6.                                        | (2,6) an open interval                                                                                                     | { x   2 < x < 6 } Read the part in braces as "the set of all numbers x such that x is greater than 2 but less than 6."                       |
| $2 \le x \le 6$ The values of x are greater than or equal to 2 and smaller than or equal to 6.          | <b>[2,6]</b> a closed interval                                                                                             | $\{x \mid 2 \le x \le 6\}$                                                                                                                   |
| $2 \le x < 6$ The values of x are greater than or equal to 2 and smaller than 6.                        | [2,6] a half open interval                                                                                                 | $\{x/2 \le x < 6\}$                                                                                                                          |
| $2 < x \le 6$ The values of x are greater than 2 and smaller than or equal to 6.                        | (2,6] a half open interval                                                                                                 | $\{x \mid 2 < x \le 6\}$                                                                                                                     |
| <ul> <li>X &gt; 2</li> <li>The values of x are greater than 2 and there are infinitely many.</li> </ul> | (2, ∞) The positive infinity symbol <sup>∞0</sup> ALWAYS has a parenthesis next to it!                                     | { x   X > 2 }                                                                                                                                |
| $x \ge 2$ The values of x are greater than or equal to 2 and there are infinitely many.                 | [2,∞)                                                                                                                      | $\{x \mid x \geq 2\}$                                                                                                                        |
| X < 2 The values of x are smaller than 2 and there are infinitely many.                                 | (-\infty,2) The negative infinity symbol - \infty ALWAYS has a parenthesis next to it!                                     | { x   X < 2 }                                                                                                                                |
| $x \leq 2$ The values of x are less than or equal to 2 and there are infinitely many.                   | (-∞,2]                                                                                                                     | $\{x \mid X \leq 2\}$                                                                                                                        |
| All Real Numbers                                                                                        | (-ω, ω)                                                                                                                    | { x   x is a rational or an irrational number}                                                                                               |
| All Real Numbers except -1 and<br>5                                                                     | $(-\infty - 1) \cup (-1,5) \cup (5,\infty)$<br>Note: $\cup$ (Union) means one or the other or both solutions are possible. | $\{x \mid X \neq -1, X \neq 5\}$<br>Read the part in braces as "the set of all numbers x such that x is not equal to -1 and not equal to 5." |
| x < 2 <sub>but</sub> x ≠ 0                                                                              | (-∞,0) ∪ (0,2)                                                                                                             | $\{x \mid x < 2, x \neq 0\}$                                                                                                                 |

#### **Problem 1:**

Find the solution set for  $3 - 5x \ge 13$  in *Interval Notation*. Then graph the solution set on the number line!

$$-5x \ge 10$$

Now we have to multiply both sides be the reciprocal of -5 or we can say that we must divide both sides by -5! Note that the inequality sign changes direction when we divide or multiply by a negative number!



The graph of the solution set:

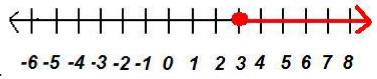
Please note that the graph contains a solid dot at -2 to indicate that -2 is included in the solution set! The arrow indicates that the solution set includes infinitely many numbers less than -2!

#### **Problem 2:**

Find the solution set for  $6x - 15 \ge 3$  in *Interval Notation*. Then graph the solution set on the number line!

$$6x \ge 18$$

The solution set in *Interval Notation*: **[3, ∞)** 



The graph of the solution set:

Please note that 3 is included in the solution set. The arrow indicates that the solution set includes infinitely many numbers greater than 3!

#### **Problem 3:**

Find the solution set for x - 9 < 5x + 7 in *Interval Notation*. Then graph the solution set on the number line!

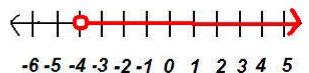
First, we will combine like terms as follows:

$$-4x < 16$$

Now we have to multiply both sides of the inequality by the **reciprocal of -4**, which is the same as **dividing both sides by -4**!

We get X > -4 Note that the inequality sign changes direction when we divide or multiply by a negative number!

The solution set in *Interval Notation*:  $(-4, \infty)$ 



The graph of the solution set:

Please note that the graph contains a circle at -4 to indicate that -4 is **NOT** included in the solution set! The arrow indicates that the solution set includes infinitely many numbers greater than -4!

#### **Problem 4:**

Find the solution set for  $-2 < 5x + 1 \le 3$  in *Interval Notation*. Then graph the solution set on the number line!

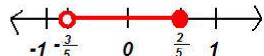
Subtracting 1 from the left and right side of the inequality and from the middle, we get

$$-3<5x\leq 2$$

Dividing  $\boldsymbol{5}$  into the left and right side of the inequality, and into the middle, we get

$$-\frac{3}{5} < x \leq \frac{2}{5}$$

The solution set in *Interval Notation*:  $(-\frac{3}{5}, \frac{2}{5}]$ 



The graph of the solution set:

Please note that the graph contains a circle at  $-\frac{3}{5}$  to indicate that  $-\frac{3}{5}$  is **NOT** included in the solution set and a solid dot at  $\frac{2}{5}$  to indicated that  $\frac{2}{5}$  is included in the solution set!

#### **Problem 5:**

Find the solution set for  $\frac{3}{4} - x > \frac{7}{8}$  in *Interval Notation*. Then graph the solution set on the number line!

Again we want all constant terms on the right of the equal sign. Using the *Addition Axiom*, we get

$$-x > \frac{7}{8} - \frac{3}{4}$$

NOTE: Given fraction, it is a good idea to write the *Addition Axiom* out (at least on the right side) and not do mental calculations!

Now we have to combine like terms on the right using the **LCD 8**. Then

$$-x > \frac{7}{8} - \frac{3}{4}$$
 and  $-x > \frac{1}{8}$ 

We actually now have to use the *Multiplication Axiom* to finish solving the equation. Since the coefficient of the variable must be +1 for the equation to be solved, we must multiplied both sides of the equal sign by -1, which is the reciprocal of -1. Please not that the inequality sign will change direction!

and we find that 
$$X < -\frac{1}{8}$$
.

The solution set in *Interval Notation*:  $(-\infty, -\frac{1}{8})$ 



The graph of the solution set:

Please note that the graph contains a circle at  $\frac{1}{8}$  to indicate that  $\frac{1}{8}$  is **NOT** included in the solution set!

#### **Problem 6:**

Find the solution set for 3x + 2(4 - 9x) - 3(x - 3) + x < 0 in Interval Notation.

First use the *Distributive Property of Multiplication* to eliminate parentheses.

This means that we can write the given equation in simplified form as follows:

$$3x + 8 - 18x - 3x + 9 + x < 0$$

Next, we'll combine like terms

$$-17x + 17 < 0$$

then we separate the variable and the constant

$$-17x < -17$$

and finally, we isolate the variable by multiplying both sides of the equality by the reciprocal of the coefficient of the variable to find that x > 1.

This is (1, 00) in Interval Notation. Please not that the inequality sign changed direction!

#### **Problem 7:**

Find the solution set for  $7 - (x - 8) \le 4x$  in *Interval Notation*.

First we us the *Distributive Property of Multiplication* to eliminate parentheses.

NOTE: Here you must know that we have a product **-(x - 8)**, where one factor is the constant **-1**. So we actually multiply each term in the second factor by **-1** as follows:

$$-(x - 8) = -1(x) - 1(-8)$$
  
= -x + 8

This means that we can write our equation in simplified form as follows:

$$7-x+8 \le 4x$$

Next, we'll combine like terms on the left

$$15 - x \le 4x$$

then we separate the variable and the constant by adding X to both sides to get

$$15 \leq 5x$$

and finally, we isolate the variable using the *Multiplication Axiom* to get  $3 \le x$ .

It is customary in algebra to place the variable on the left side, therefore, we must write  $X \ge 3$ 

This is [3, ∞) in Interval Notation.

#### **Problem 8:**

Find the solution set for  $\frac{2}{3} \le \frac{5-3x}{2} < \frac{3}{4}$  in *Interval Notation*.

With this type of inequality, it is best to clear fractions immediately. Simply multiply each part by the common denominator taking all given denominators into account.

The LCD is 12!!!

$$12\left(\frac{2}{3}\right) \le 12\left(\frac{5-3x}{2}\right) < 12\left(\frac{3}{4}\right)$$

Reducing fractions, we get

$$8 \le 6(5-3x) < 9$$

and using the Distributive Property

$$8 \le 30 - 18x < 9$$

$$-22 \le -18x < -21$$

$$\frac{-22}{-18} \ge X > \frac{-21}{-18}$$

$$\frac{11}{9} \ge x > \frac{7}{6}$$

It is standard procedure in compound inequality to have all inequality signs point to the left, therefore, we rearrange our terms without changing the solution set

$$\frac{7}{6} < X \leq \frac{11}{9}$$

The solution set in *Interval Notation* is  $\binom{7}{6}, \frac{11}{9}$ .

#### **Problem 9:**

Find the solution set for |x-1| < 5 in *Interval Notation*. Then graph the solution set on the number line!

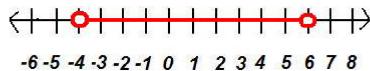
By definition above, the "less than" case is rewritten as a compound inequality as follows

$$-5 < x - 1 < 5$$

Isolating the variable in the middle, we get

$$-4 < x < 6$$

The solution set in Interval Notation: (-4,6)



The graph of the solution set:

Please note that the graph contains a circle at -4 and 6 to indicate that -4 and 6 are **NOT** included in the solution set.

#### Problem 10:

Find the solution set for  $3|4-2x| \le 6$  in *Interval Notation*. Then graph the solution set on the number line!

Before we apply the definition, we MUST first isolate the absolute value as follows

$$|4-2x|\leq 2$$

Next, we will rewrite the "less than or equal to" case as a compound inequality according to the above definition

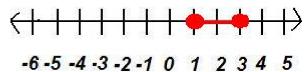
$$-2\leq 4-2\chi\leq 2$$

$$-6 \le -2x \le -2$$

# $3 \ge X \ge 1$ Note that the inequality signs changed direction because we divided by a negative number!

Changing the solution set to standard form, we get  $1 \le x \le 3$ .

The solution set in Interval Notation: [1,3]



The graph of the solution set:

Please note that the graph contains a solid dot at 1 and 3 to indicate that 1 and 3 are included in the solution set.

#### Problem 11:

Find the solution set for |5x + 4| > 1 in *Interval Notation*. Then graph the solution set on the number line!

By definition above, the "greater than" case is rewritten as two inequalities as follows:

$$5x + 4 > 1$$

$$5x > -3$$

$$X > -\frac{3}{5}$$

or

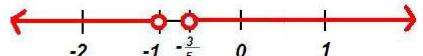
$$-(5x+4)>1$$

$$-5x-4>1$$

$$-5x > 5$$

$$x < -1$$

The solution set in *Interval Notation*:  $(-\infty, -1) \cup (-\frac{3}{5}, \infty)$ 



The graph of the solution set:

Please note that the graph contains a circle at  $-\frac{3}{5}$  and -1 to indicate that  $-\frac{3}{5}$  and -1 are NOT included in the solution set. The arrows indicate that the solution set includes infinitely many numbers less than -1 and greater than  $-\frac{3}{5}$ !

#### Problem 12:

Find the solution set for  $|2x-1| \ge 3$  in *Interval Notation*. Then graph the solution set on the number line!

By definition above, the "greater than or equal" case is rewritten as two inequalities as follows:

$$2x-1\geq 3$$

$$2x \ge 4$$

and 
$$x \ge 2$$

or

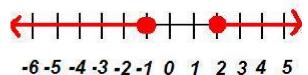
$$-(2x-1) \ge 3$$

$$-2x + 1 \ge 3$$

$$-2x \ge 2$$

and  $X \le -1$  Note that the inequality sign changes direction when we divide or multiply by a negative number!

The solution set in *Interval Notation*:  $(-\infty, -1] \cup [2, \infty)$ 



The graph of the solution set:

Please note that the graph contains a solid dot at -1 and 2 to indicate that -1 and 2 are included in the solution set. The arrows indicate that the solution set includes infinitely many numbers less than -1 and greater than 2!