

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IMAGINARY NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT USE A CALCULATOR ON THE ACCUPLACER - ELEMENTARY ALGEBRA TEST! YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

Imaginary Numbers

Most imaginary numbers result from findings roots of negative numbers given an EVEN index only. A purely imaginary number is represented by the letter *i* and *i* is equal to \(\sqrt{-1} \). Please note that given an odd index, roots of negative numbers result in rational or irrational numbers.

NOTE: There is no *real number* that can be squared to get a result of **-1**. Therefore, the solution to $\sqrt{-1}$ only exists in our imagination.

• When we encounter the square root of a negative number, it is customary to take the negative sign out of the radical and convert it to the letter *i* as follows:

$$\sqrt{-a} = i\sqrt{a}$$

• Furthermore, $i^2 = -1$

Complex Numbers

Complex Numbers are of the form $\mathbf{a} + \mathbf{b}\mathbf{i}$, where \mathbf{a} is a real number and $\mathbf{b}\mathbf{i}$ a purely imaginary number with coefficient \mathbf{b} . All real numbers can be written in complex form.

For example, 3 + 0i, -2.34 + 0i, etc.

On the other hand, 3 + 2i or -2.34 - 5.1i are complex number containing an imaginary part and are therefore called imaginary numbers.

Problem 1:

Simplify $\sqrt{-81}$, if possible, and write in terms of *i*.

 $\sqrt{-81}$ is an imaginary number because the INDEX IS EVEN and the radicand is negative.

There is no *real number* that can be squared to get a result of **-81**. Therefore, the solution to $\sqrt{-81}$ only exists in our imagination.

When we encounter the square root of a negative number, it is customary to take the negative sign out of the radicand and convert it to the letter "i" as follows:

 $\sqrt{-81} = i\sqrt{81}$. There is an assumed multiplication sign between the number *i* and the radical expression.

Since the number **81** is a perfect square, we can further write $\sqrt{-81} = i\sqrt{81} = 9i$.

NOTE: It is customary to write the factor \boldsymbol{i} AFTER a number once the radical sign is eliminated.

Problem 2:

Write $\sqrt{-3}$ in terms of *i*.

 $\sqrt{-3}$ is an imaginary number because the INDEX IS EVEN and the radicand is negative.

There is no *real number* that can be squared to get a result of **-3**. Therefore, the solution to $\sqrt{-3}$ only exists in our imagination.

However, we can simplify $\sqrt{-3}$ by writing $\sqrt{-3} = i\sqrt{3}$.

NOTE: It is customary to write the i in front of the radical!

Sometimes, we want to change the radical expression to a decimal approximation (remember it is a non-terminating decimal) in which case we write

$$i\sqrt{3} \approx 1.73i$$

NOTE: It is customary to write the i AFTER a number once the radical sign is eliminated.

Problem 3:

Simplify $\sqrt{-64}$, if possible, and write in terms of *i*.

 $\sqrt{-64}$ is an imaginary number because the INDEX IS EVEN and the radicand is negative.

There is no *real number* that can be squared to get a result of **-64**. Therefore, the solution to $\sqrt{-64}$ only exists in our imagination.

However, we can simplify by writing $\sqrt{-64} = i\sqrt{64} = 8i$.

NOTE: It is customary to write the factor *i* AFTER a number once the radical sign is eliminated.

Adding and Subtracting Complex Numbers

- Add or subtract the real parts.
- Add or subtract the coefficients of the imaginary parts.

Problem 4:

Add
$$(3 + 6i) + (9 - 2i)$$
.

NOTE: When you carry out an arithmetic operation on complex numbers, you must enclose them in parentheses!

We can rewrite this as follows:

$$3 + 9 + 6i - 2i = 12 + (6 - 2)i$$

= $12 + 4i$

Problem 5:

Subtract (2 + 7i) - (8 - i).

In this case, we MUST observe the minus sign in front of the parentheses.

We first must write 2 + 7i - 8 + i.

The we combine "like" terms to get -6 + 8i.

Please note that *i* has a coefficient of *1* which is usually not written, but must be used in addition and subtraction.

Multiplying Complex Numbers

Multiplying complex numbers uses procedures similar to multiplying polynomials!

Problem 6:

Multiply **7(3i)**.

Here we multiply the coefficients to get 21i.

Problem 7:

Multiply *7i(3i)*.

Here we multiply the coefficients and the imaginary numbers to get 212.

Since we know that $I^2 = -1$, we can state

$$21i^2 = 21(-1) = -21$$

Problem 8:

Multiply (2 + 7i)(8 - 3i).

Use the FOIL process to multiply (2 + 7i)(8 - 3i).

$$F O I L$$
 then $16 - 6i + 56i - 21i^2$

Since we know that $I^2 = -1$, we can write

$$16 - 6i + 56i - 21(-1) = 16 - 6i + 56i + 21$$

and finally we can combine like terms to get

$$37 + 50i$$

Problem 9:

Factor the Sum of Squares $x^2 + 4$.

Now we know that the *Difference of Squares* $x^2 - 4$ is factored into (x - 2)(x + 2).

The Sum of Squares, on the other hand is factored into (x - 2i)(x + 2i).

Check:

Use FOIL to multiply (x - 2i)(x + 2i).

$$F O I L$$

then $x^2 + 2i - 2i - 4i^2$

Since we know that $I^2 = -1$, we can write

$$x^2 + 2i - 2i - 4(-1)$$

and multiplying and combining like terms will result in $X^2 + 4$.

Rationalizing a Denominator containing a Complex Number

- Multiply the denominator by its conjugate ***.
- To preserve the value of the fraction, multiply the numerator by the same number.
- Simplify all and write the number in the form a + bi.

*** The conjugate of a complex number **a** + **bi** is the complex number **a** - **bi**.

NOTE: In Steps 1 and 2 above, we have actually multiplied the fraction by an equivalent of the number 1!

Problem 10:

Rationalize the denominator of $\frac{4+i}{3-i}$ and write in standard form a+bi.

First, we will multiply both the numerator and the denominator by $\mathbf{3} + \mathbf{i}$, which is the conjugate of the denominator.

$$\frac{(4+i)(3+i)}{(3-i)(3+i)}$$

Next, we will use the FOIL method to multiply the complex numbers in the numerator. Observe that the denominator contains a *Difference of Squares!*

$$\frac{12+4i+3i+i^2}{9-i^2}$$

Since we know that $I^2 = -1$, we can write

$$\frac{12+7i-1}{9-(-1)}=\frac{11+7i}{10}$$

and finally, we find that we can express $\frac{4+i}{3-i}$ in standard form as $\frac{11}{10} + \frac{7}{10}i$

Problem 11:

Rationalize the denominator of $\frac{6-i}{4+i}$ and write in standard form a+bi.

First, we will multiply both the numerator and the denominator by **4 - i**, which is the conjugate of the denominator.

$$\frac{(6-i)(4-i)}{(4+i)(4-i)}$$

Next, we will use the FOIL method to multiply the complex numbers in the numerator. Observe that the denominator contains a *Difference of Squares!*

$$\frac{24-6i-4i+i^2}{16-i^2}$$

Since we know that $I^2 = -1$, we can write

$$\frac{24-10i-1}{16-(-1)}=\frac{23-10i}{17}$$

and finally, we find that we can express $\frac{6-i}{4+i}$ in standard form as $\frac{23}{17} - \frac{10}{17}i$

Problem 12:

Rationalize the denominator of
$$\frac{-6-2i}{-4+2i}$$
 and write in standard form $a + bi$.

First, we will multiply both the numerator and the denominator by **-4 - 2i**, which is the conjugate of the denominator.

$$\frac{(-6-2i)(-4-2i)}{(-4+2i)(-4-2i)}$$

Next, we will use the FOIL method to multiply the complex numbers in the numerator. Observe that the denominator contains a *Difference of Squares!*

$$\frac{24+12i+8i+4i^2}{16-4i^2}$$

Since we know that $I^2 = -1$, we can write

$$\frac{24+20i+4(-1)}{16-4(-1)}=\frac{20+20i}{20}$$

and
$$\frac{20}{20} + \frac{20i}{20} = 1 + i$$

Finally, we find that we can express $\frac{-6-2i}{-4+2i}$ in standard form as 1+i.