

DETAILED SOLUTIONS AND CONCEPTS - ABSOLUTE VALUE EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT USE A CALCULATOR ON THE ACCUPLACER - ELEMENTARY ALGEBRA TEST! YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

How to Find Solutions of Absolute Value Equations

If c is positive, |ax + b| = c is equivalent to (ax + b) = c or -(ax + b) = c.

You have to solve both equations!!! The word "or" is a part of the formula and must be there. It does not mean that you can use either one of the equations when you solve the variable.

- Isolate the absolute value on one side of the equation. Be sure the coefficient is 1.
- Solve both equations (ax + b) = c or -(ax + b) = c.
- Check the solutions in the original equation, rejecting any that do not satisfy it.

Problem 1:

Solve
$$|4 - 5x| - 19 = 0$$

Let's isolate the absolute value as follows:

$$|4 - 5x| = 19$$

By definition, (4 - 5x) = 19

or
$$-(4 - 5x) = 19$$

$$-4 + 5x = 19$$

and
$$-5x = 15$$
 or $5x = 23$

then
$$x = -3$$
 or $x = \frac{23}{5}$

Checking the solutions in the original equation we find

$$|4 - 5(-3)| = |4 + 15| = |19| = 19$$

$$|4 - 5(\frac{23}{5})| = |4 - 23| = |-19| = 19$$

Problem 2:

Solve
$$|3x| - 6 = 0$$

Let's isolate the absolute value as follows:

$$|3x| = 6$$

By definition, 3x = 6 or -3x = 6

and
$$x = 2$$
 or $x = -2$

Checking the solutions in the original equation we find

$$|3(2)| = |6| = 6$$

$$|3(-2)| = |-6| = 6$$

Problem 3:

Solve
$$|x + 2| + 1 = 0$$

Let's isolate the absolute value as follows:

$$|x + 2| = -1$$

Please note that an absolute value is never equal to a negative number. There is actually NO solution to this problem. However, let's just go ahead and pretend that we did not notice.

By definition, x + 2 = -1

or
$$-(x + 2) = -1$$

$$-x - 2 = -1$$

and
$$x = -3$$
 or $x = -1$

Checking the solutions in the original equation we find

$$|-3 + 2| + 1 = |-1| + 1 = 1 + 1 = 2 \neq 0$$

$$|-1 + 2| + 1 = |1| + 1 = 1 + 1 = 2 \neq 0$$

We find that there is NO solution.

Problem 4:

Solve
$$|x - 4| = 7$$

By definition, x - 4 = 7

or
$$-(x - 4) = 7$$

$$-x + 4 = 7$$

and
$$x = 11$$
 or $x = -3$

Checking the solutions in the original equation we find

$$|11 - 4| = |7| = 7$$

$$|-3 - 4| = |-7| = 7$$

Problem 5:

Solve
$$|3x + 2| - 1 = 4$$

Let's isolate the absolute value as follows:

$$|3x + 2| = 5$$

By definition, 3x + 2 = 5

or
$$-(3x + 2) = 5$$

$$-3x-2=5$$

and
$$x = 1$$
 or $x = -\frac{7}{3}$

Problem 6:

Solve
$$|x| = 15$$

By definition,
$$x = 15$$
 or $-x = 15$

and
$$x = 15$$
 or $x = -15$